Investigation of interlocking effect of crushed stone ballast during dynamic loading

Authors

  • Mykola Sysyn Institute of Railway Systems and Public Transport, TU Dresden, Dresden, Germany
  • Olga Nabochenko Department of the Rolling Stock and Track, Lviv Branch of Dnipropetrovsk National University of Railway Transport, Lviv, Ukraine
  • Vitalii Kovalchuk Department of the Rolling Stock and Track, Lviv Branch of Dnipropetrovsk National University of Railway Transport, Lviv, Ukraine
  • Michał Przybyłowicz Institute of Railway Systems and Public Transport, TU Dresden, Dresden, Germany
  • Szabolcs Fischer Department of Transport Infrastructure and Water Resources Engineering, Szechenyi Istvan University, Gyor, Hungary

DOI:

https://doi.org/10.31181/rme200102065s

Keywords:

Railway ballast, Experimental measurements, Ballast particle interlocking, Residual stress, Ballast compaction

Abstract

The present paper deals with the experimental investigation of interlocking effect of crushed stone ballast material, assessing it as the relationship with the residual and dynamic stresses under the ballast layer during laboratory dynamic tests with the consideration of different boundary conditions. The laboratory experiments were executed with a scaled model of ballast under the sleeper. The measured pressure at the bottom surface of the ballast has two parts: dynamic and residual. The dynamic part depends on the external loading; the residual part remains after unloading. The measured residual stress was observed up to 3 times higher than the stress due to cyclic external loading. The relationship of the residual stress and interlocking effect to ballast particles angularity is analyzed. A simple interpretation of the distribution of residual stress is proposed, that depends on the measured cyclic stress and the elasticity of bounding walls. The study of interlocking effect of ballast could be potentially useful for many practical problems of railway track design as well as for the track maintenance issues.

References

Berghold, A. (2016). Wirkungsweise von unterschiedlichen Gleisschotterarten mit und ohne Schwellenbesohlung. ZEVrail, 01 (02), 45–52.

Beben, D. (2017). The role of backfill quality on corrugated steel plate culvert behaviour. Baltic Journal of Road and Bridge Engineering, 12(1), 1–11, DOI: https://doi.org/10.3846/bjrbe.2017.01.

Cai, X., Zhong, Y., Hao, X., Zhang, Y. & Cui, R. (2019). Dynamic behavior of a polyurethane foam solidified ballasted track in a heavy haul railway tunnel. Advances in Structural Engineering, 22(3), 751–764, DOI: https://doi.org/10.1177/1369433218799154.

Li, D., Hyslip, J., Sussmann, T. & Chrismer, S. (2015). Substructure. In Li, D., Hyslip, J., Sussmann, T. & Chrismer, S. Railway Geotechnics (pp. 90–95). London: CRC Press. DOI: https://doi.org.10.1201/b18982-4.

Esveld, C. (2001). Modern railway track. (2nd ed.). Zaltbommel: MRT-productions.

Fellin, W. (2002). Hypoplastizität für leicht Fortgeschrittene. Bautechnik, 79 (12), 830–841.

Fendrich, L., Fengler, W. (2013). Handbuch Eisenbahninfrastruktur. Berlin: Springer-Verlag Berlin Heidelberg, DOI: https://doi.org/10.1007/978-3-642-30021-9.

Fischer, S., Horvát, F. (2011). Investigation of the reinforcement and stabilization effect of geogrid layers under railway ballast. Slovak Journal of Civil Engineering, 19 (3), 22–30.

Fischer, S. (2012). Investigation of railway track geometry stabilisation effects of geogrid layers under ballast bed. PhD Thesis, Szechenyi Istvan University Doctoral School of Multidisciplinary Engineering Sciences, 148 p. DOI: https://doi.org/10.13140/RG.2.1.4958.9921. (in Hungarian)

Fischer, S. (2015). Investigation of inner shear resistance of geogrids built under granular protection layers and railway ballast. Nauka ta Progres Transportu, 59 (5), 97–106, DOI: https://doi.org/10.15802/stp2015/53169.

Fischer, S. (2017). Breakage Test of Railway Ballast Materials with New Laboratory Method. Periodica Polytechnica Civil Engineering, 61 (4), 794–802, DOI: https://doi.org.10.3311/PPci.8549.

Gudehus, G. (2003). Ratcheting und DIN 1054. Mitteilungen des Instituts und der Versuchsanstalt für Geotechnik, Technische Universität Darmstadt, 64, 159–172.

Göbel, C., Fischer, R. & Lieberenz, K. (2013). Handbuch Erdbauwerke der Bahnen Planung, Bemessung, Ausführung,Instandhaltung. Hamburg: Eurailpress in DVV Media Group.

Gerber, U., Fengler, W. (2009). Oberbau-Effektivität im Spannungsfeld von Investition und Instandhaltung. EIK – Eisenbahn Ingenieur Kompendium, 1, 1–12.

Gerber, U., Fengler, W. (2010). Setzungsverhalten des Schotters. Eisenbahntechnische Rundschau, 4, 170–175.

Herle, I. (1997). Hypoplastizität und Granulometrie einfacher Korngerüste. PhD Thesis, Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, No. 142.

Izvolt, L., Harusinec, J. & Smalo, M. (2018). Optimisation of transition areas between ballastless track and ballasted track in the area of the tunnel turecky vrch. COMMUNICATIONS Scientific Letters of the University of Zilina, 20 (3). 67–76.

Izvolt, L., Sestakova, J. & Smalo, M. (2016). Analysis of results of monitoring and prediction of quality development of ballasted and ballastless track superstructure and its transition areas. COMMUNICATIONS Scientific Letters of the University of Zilina, 18 (4), 19–29.

Ižvolt, L., Ižvoltová, J. & Šestáková, J. (2014). Influence of construction of railway superstructure on railway quality. Applied Mechanics and Materials, 617, 54–59.

Izvolt, L., Kardos, J. (2011). Influence of parameters of railway track construction on vertical dynamic interaction vehicle/track. Komunikacie 13 (3), 63–70.

Juhász, E., Fischer, S. (2019). Investigation of railroad ballast particle breakage. POLLACK PERIODICA An International Journal for Engineering and Information Sciences, 14 (2), 1–8, DOI: https://doi.org/10.1556/606.2019.14.1.1.

Klotzinger, E. (2008). Der Oberbauschotter Teil 1: Anforderungen und Beanspruchung. ETR – Eisenbahntechnische Rundschau, 1, 34–41.

Kovalchuk, V., Kovalchuk, Y., Sysyn, M., Stankevych, V. & Petrenko, O. (2018). Estimation of carrying capacity of metallic corrugated structures of the type Multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 1 (1-91), 18–26, DOI: https://doi.org/10.15587/1729-4061.2018.123002.

Kolos, A., Konon, A. & Chistyakov, P. (2017). Change of ballast strength properties during particles abrasive wear. Procedia Engineering, 189, 908–915, DOI: https://doi.org/10.1016/j.proeng.2017.05.141.

Lang, R., Yang, A. & Yan, S. (2019). Analysis of Stress-strain Characteristics of Geogrid Reinforced Crushed Gravel. KSCE Journal of Civil Engineering, 23 (2), 549–555, DOI: https://doi.org/10.1007/s12205-018-0943-4.

Lichtberger, B. (2005). Track compendium. Hamburg: Eurailpress.

Liu, Q., Lei, X., Rose, J.G. & Purcell, M. L. (2017). Pressure measurements at the tie-ballast interface in railroad tracks using granular material pressure cells. Joint Rail Conference, JRC 2017, 1–9, DOI: https://doi.org/10.1115/JRC2017-2219.

Liu, S., Huang, H. & Qiu, T. (2018). Evaluating ballast stabilization during initial compaction phase. ASTM Special Technical Publication, STP 1605, 105–122, DOI: https://doi.org/10.1520/STP160520170032.

Meißner, S. (2014). Numerische Studien zum in-situ Setzungsverhalten von Gründungssystemen unter zyklischer Einwirkung in nichtbindigen Böden, Mitteilungen des Instituts für Werkstoffe und Mechanik im Bauwesen der Technischen Universität Darmstadt, 42, 33–62.

Nabochenko, O., Sysyn, M., Kovalchuk, V., Kovalchuk, Yu., Pentsak, A., & Braichenko, S. (2019). Study railroad track geometry deterioration as a result of an uneven subsidence of the ballast layer. Eastern-European Journal of Enterprise Technologies, 50–59, DOI: https://doi.org/10.15587/1729-4061.2019.154864.

Plášek, O., Hruzíková, M. (2017). Under sleeper pads in switches & crossings. IOP Conference Series: Materials Science and Engineering, 236 (1), 12–45, DOI: https://doi.org/10.1088/1757-899X/236/1/012045.

Ramūnas, V., Vaitkus, A., Laurinavičius, A., Čygas, D. & Šiukščius, A. (2017). Prediction of lifespan of railway ballast aggregate according to mechanical properties of it. Baltic Journal of Road and Bridge Engineering, 12 (3), 203–209, DOI: https://doi.org/10.3846/bjrbe.2017.25.

Sysyn, M., Nabochenko, O., Gerber, U. & Kovalchuk, V. (2019). Evaluation of railway ballast layer consolidation after maintenance works. Acta Polytechnica, 58 (6), 1–16.

Sysyn, M., Gerber, U., Kovalchuk, V. & Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 46 (3), 91–107, DOI: https://doi.org/10.5604/01.3001.0012.6512.

Suhr, B., Marschnig, S. & Six, K. (2018). Comparison of two different types of railway ballast in compression and direct shear tests: experimental results and DEM model validation. Granular Matter, 20 (4), 70(1–13), DOI: https://doi.org/10.1007/s10035-018-0843-9.

Selig, E. T., Waters, J. M. (1994). Track Geotechnology and Substructure Management. London: Thomas Telford.

Veit, P. (2013). Instandhaltung und Anlagenmanagement des Fahrweges. Maintenance and asset management of permanent way. In: Fendrich, L., Fengler, W., (Eds.), Handbuch Eisenbahninfrastruktur. Field manual Railway Infrastructure (pp. 1009–1054). Berlin: Springer-Verlag Berlin Heidelberg.

Wang, B., Martin, U. (2018). A random form generator for ballast stones. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232 (6), 1660–1670, DOI: https://doi.org/10.1177/0954409717743604.

Wang, B., Martin, U. & Rapp, S. (2017). Discrete element modeling of the single-particle crushing test for ballast stones. Computers and Geotechnics, 88, 61–73, DOI: https://doi.org/10.1016/j.compgeo.2017.03.007.

Wang, B., Martin, U. & Rapp, S. (2016). Vibration Characteristic Analysis of Ballast with Different Aspect Ratios by Means of the Discrete Element Method. Geotechnical Special Publication, 2016-January (268 GSP), 16–23, DOI: https://doi.org/10.1061/9780784480113.003.

Watts, T. J., Rose, J. G. & Russell, E. J. (2018). Relationships between wheel/rail surface impact loadings and correspondingly transmitted tie/ballast impact pressures for revenue train operations”. Joint Rail Conference, JRC 2018, V001T01A014 (1–10), DOI: https://doi.org/10.1115/JRC2018-6184.

Published

2021-04-05

How to Cite

Sysyn, M., Nabochenko, O., Kovalchuk, V., Przybyłowicz, M., & Fischer, S. (2021). Investigation of interlocking effect of crushed stone ballast during dynamic loading. Reports in Mechanical Engineering, 2(1), 65–76. https://doi.org/10.31181/rme200102065s