A review on Wire-EDM of bio titanium

Authors

  • Sujeet Kumar Chaubey Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg 2028, South Africa
  • Kapil Gupta Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg 2028, South Africa

DOI:

https://doi.org/10.31181/rme040103092023c

Keywords:

Biomedical, Implants, Surface Quality, Titanium, Wire-EDM

Abstract

Nonconventional machining technologies have been found viable to manufacture various products from a wide range of engineering materials. Wire electric discharge machining (WEDM), also known as Wire-EDM, is one of the important thermal type nonconventional machining technologies. Wire-EDM is being preferably used by manufacturers to produce biomedical devices including bio and dental implants. This paper presents an overview of capabilities of wire-EDM type nonconventional machining technology for the precise machining of titanium and its alloys for biomedical applications. It reviews the important research work conducted on machining titanium alloys by wire electrical discharge machining (WEDM). Their findings and achievements are discussed to encourage further research and development in the biomaterial machining area.

References

Akıncıoğlu S. (2022). Taguchi Optimization of Multiple Performance Characteristics in the Electrical Discharge Machining of the Tigr2. Facta Universitatis, Series: Mechanical Engineering, 20(2), 237-253.

Aliyu, A.A.A., Abdul-Rani, A.M., Ginta, T.L., Prakash, C., Axinte, E., Razak, M.A., & Ali, S. (2017). A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants. Advances in Materials Science and Engineering, 8723239, 8723239.

Amin, M.A., Abdul-Rani, A.M., Danish, M., Thompson, H.M., Aliyu, A.A.A., Hastuty, S., Zohura, F.T., Bryant, M.G., Rubaiee, S., & Rao, T.V.V.L.N. (2020). Assessment of PM-EDM cycle factors influence on machining responses and surface properties of biomaterials: A comprehensive review. Precision Engineering, 66, 531-549.

Amin, M., Abdul-Rani, A.M., Danish, M., Rubaiee, S., Mahfouz, A.b., Thompson, H.M., Ali, S., Unune, D.R., & Sulaiman, M.H. (2021). Investigation of Coatings, Corrosion and Wear Characteristics of Machined Biomaterials through Hydroxyapatite Mixed-EDM Process: A Review. Materials, 14, 3597.

Arikatla, S.P, Mannanb, K.T., & Krishnaiah, A. (2017). Parametric optimization in wire electrical discharge machining of titanium alloy using response surface methodology. Materials Today: Proceedings, 4, 1434–1441.

Basak, A., Pramanik, A., Prakash, C., Shankar, S., & Debnath, S. (2022). Understanding the Micro-Mechanical Behaviour of Recast Layer Formed during WEDM of Titanium Alloy. Metals, (12), 188.

Biswas, S., Paul, A.R., Dhar, A.R., Singh, Y., & Mukherjee, M. (2023). Multi-material modeling for wire electro-discharge machining of Ni-based superalloys using hybrid neural network and stochastic optimization techniques. CIRP Journal of Manufacturing Science and Technology, 41, 350-364.

Bose, S., & Nandi, T. (2023). DMOGA on performance measures of WEDM for titanium matrix composite. Materials Today: Proceedings, 78(3), 469-475.

Chaudhari, R., Vora, J.J., Patel, V., López de Lacalle, L.N., & Parikh, D.M. (2020). Surface Analysis of Wire-Electrical-Discharge-Machining-Processed Shape-Memory Alloys. Materials, 13, 530.

Das D.A., Kumar S.K., & Prasanna, R. (2021). Investigating the effect of wire cut EDM of titanium alloy 6242 using TOPSIS. Advances in Materials and Processing Technologies, 8(3), 2824-2836.

Davis, R., Singh, A., Jackson, M.J., Coelho, R.T., Prakash, D., Charalambous, C.P., Ahmed, W., Silva, L.R.R., & Lawrence, & A.A. (2022). A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. International Journal of Advanced Manufacturing Technology, 120, 1473–1530.

Devarasiddappa, D., & Chandrasekaran, M. (2020). Experimental investigation and optimization of sustainable performance measures during wirecut EDM of Ti-6Al-4V alloy employing preference based TLBO algorithm. Materials and Manufacturing Processes 35(11), 1204-1213.

Farooq, M.U., Ali, M.A., He, Y., Khan, A.M., Pruncu, C.I., Kashif, M., Ahmed, N., & Asif, N. (2020). Curved profiles machining of Ti6Al4V alloy through WEDM: investigations on geometrical errors. Journal of materials research and technology, 9(6), 16186-16201.

Gupta, K. (2021). Intelligent Machining of Shape Memory Alloys. Advances in Science and Technology Research Journal, 15(3), 43–53.

Gupta, N.K., Somani, N., Prakash, C., Singh, R., Walia, A.S., Singh, S., & Pruncu, C.I. (2021). Revealing the WEDM Process Parameters for the Machining of Pure and Heat-Treated Titanium (Ti-6Al-4V) Alloy. Materials, 14, 2292.

Hashmi, A.W., Mali, H.S., Meena, A., Saxena, K.K., Ahmad, S., Agrawal, M.K., Sagbas, B., Puerta, A.P.V., & Khan, M.I. (2023). A comprehensive review on surface post-treatments for freeform surfaces of bio-implants. Journal of Materials Research and Technology, 23, 4866-4908.

Haque, R., Sekh, M., Kibria, G., & Haidar, S. (2023). Improvement of Surface Quality of Ti-6al-4v Alloy by Powder Mixed Electrical Discharge Machining Using Copper Powder. Facta Universitatis, Series: Mechanical Engineering, 21(1), 63-79.

Hou, Y., Xu, J., Lian, Z., Zhai, C., Li, M., Yang, S., & Yu, H. (2022). Research on surface microstructures and properties of NiTi shape memory alloy after wire electrical discharge machining. Materials Today Communications, 31, 103521.

Jain, N.K., & Gupta, K. (2020). Spark Erosion Machining- MEMS to Aerospace, CRC Press.

Kulkarni, V.N., Gaitonde, V.N., Karnik, S.R., Manjaiah, M., & Davim, J.P. (2020). Machinability Analysis and Optimization in Wire EDM of Medical Grade NiTi Memory Alloy. Materials, 13, 2184.

Kumar, S., Khan, A.M., & Muralidharan, B. (2019). Processing of titanium-based human implant material using wire EDM. Materials and Manufacturing Processes 34(6), 695-700.

Kumar, A., Sharma, R., & Gujral, R. (2021). Investigation of crack density, white layer thickness, and material characterization of biocompatible material commercially pure titanium (grade-2) through a wire electric discharge machining process using a response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(36), 2073-2097.

Li, Y., Yang, C., Zhao, H., Qu, S., Li, X., & Li, Y. (2014). New Developments of Ti-Based Alloys for Biomedical Applications. Materials, 7, 1709-1800.

Mahbub, M.R., Kovach, L., A., Wolfe, M., Lalvani, S., James, P. F., & Jahan, M.P. (2022). Enhancing cell adhesion and corrosion performance of titanium alloy by surface and sub-surface engineering using WEDM. Surface and Coatings Technology, 429, 127929.

Majumder, H., & Maity, K. (2018). Application of GRNN and multivariate hybrid approach to predict andoptimize WEDM responses for Ni-Ti shape memory alloy. Applied Soft Computing, 70, 665-679.

Manderna, S.K., Katyal, P., Gupta, M., & Singh, G. (2022). Wear and corrosion behaviour of wire electrical discharge machined Ti-6A1-4v alloy. IOP Conference Series: Materials Science and Engineering, 1225, 012067.

Manupati, V.K., Rajyalakshmi, G., Varela, M.L.R., Machado, J., & Putnik, G.D. (2019). Investigation of Copper and Zinc Contamination on the Work Piece Surface with WEDM. Innovation, Engineering and Entrepreneurship, 608–615.

Mouralova, K., Kovar, J., & Sliwkova, P. (2016). Evaluation of s-parameters on the surface of titanium alloy TI-6AL-4V and AL99.5 machined by WEDM. MM Science Journal, 2016(December), 1537-1540.

Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8(11), 3888-3903.

Oliver, S., Raj, N., & Prabhu, S. (2017). Modeling and analysis of titanium alloy in wirecut EDM using Grey relation coupled with principle component analysis. Australian Journal of Mechanical Engineering 15(3), 198-209.

Paturi, U.M.R., Cheruku, S., Salike, S., Pasunuri. V.P.K., & Reddy, N.S. (2022). Estimation of machinability performance in wire-EDM on titanium alloy using neural networks. Materials and Manufacturing Processes, 37(9), 1073-1084.

Prakash, S., Favas, C.S.A., Basha, I.A., Venkatesh, R., Prabhahar, M., Durairaj, V.P., Gomathi, K., & Lenin H. (2022). Investigation of mechanical and tribological characteristics of medical grade Ti6al4v titanium alloy in addition with corrosion study for wire EDM process. Advances in Materials Science and Engineering, 5133610.

Pramanik, A., Basak, A.K., & Prakash, C. (2019). Understanding the wire electrical discharge machining of Ti6Al4V alloy. Heliyon, 5(4), e01473.

Pop, G., Dragomir, M., Titu, A., & Cupsan, V. (2019). Review of wire electrical discharge machining of the aluminum extrusion die. Nonconventional Technologies Review, 23(3), 48-54.

Prakash, C., Kansal, H.K., Pabla, B., Puri, S., & Aggarwal, A. (2015). Electric discharge machining-A potential choice for surface modification of metallic implants for orthopedic applications: A review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230 (2), 331-353.

Samson, R.M., Sridhar, A., Ranjith, R., Muthiya, S.J., Dhanraj, J.A., Basavankattimath, M.S., & Shata, A.S. (2022). Experimental investigation of heat-treated tool on wire electric discharge machining of titanium alloy (Ti-6Al-4V). Advances in Materials Science and Engineering, 4160276.

Sharma, V.S., Sharma, N., Singh, G., Gupta, M.K., & Singh, G. (2022). Optimization of WEDM Parameters While Machining Biomedical Materials Using EDAS-PSO. Materials, 16, 114.

Sidhu, A., S. (2021). Surface texturing of non-toxic, biocompatible titanium alloys via electro-discharge. Reports in Mechanical Engineering, 2(1), 51–56.

Singh, R.K., Tiwari, S.K., Srivastava, S.C. & Kumar, B. (2023). Hybrid Taguchi-GRA-CRITIC Optimization Method for Multi-Response Optimization of Micro-EDM Drilling Process Parameters. Tehnički vjesnik, 30 (3), 804-814.

Stojković, J.R., Stojković, M., Turudija, R.., Aranđelović, J., & Marinkovic, D. (2023). Adjustable Elasticity of Anatomically Shaped Lattice Bone Scaffold Built by Electron Beam Melting Ti6Al4V Powder. Metals, 13 (9), 1522.

Wang, Y., Wang, Q., Ding, Z., He, D., Xiong, W., Chen, S., & Li, Z. (2018). Study on the mechanism and key technique of ultrasonic vibration and magnetic field complex assisted WEDM-LS thick shape memory alloy workpiece. Journal of Materials Processing Technology, 261, 251-265.

Wang, M., Peng, Z., Li, C., Zhang, J., Wu, J., Wang, F., Li, Y., & Lan, H. (2022). Multi-Scale Structure and Directional Hydrophobicity of Titanium Alloy Surface Using Electrical Discharge. Micromachines, 13(6), 937.

Wasif, M., Iqbal, S.A., Fatima, A., Yaqoob, S., & Tufail, M. (2020). Experimental investigation for the effects of wire EDM process parameters over the tapered cross-sectional workpieces of titanium alloys (Ti6Al-4V). Mechanical Sciences, 11(1), 20211-2032.

Published

2023-09-03

How to Cite

Chaubey, S. K., & Gupta, K. (2023). A review on Wire-EDM of bio titanium. Reports in Mechanical Engineering, 4(1), 141–152. https://doi.org/10.31181/rme040103092023c