
Reports in Mechanical Engineering 

Vol. 1, No. 1, 2020, pp. 187-191. 

ISSN: 2683-5894, DOI: https://doi.org/10.31181/rme200101187h      187 

  

Journal homepage: https://www.frontpres.rabek.org 

A new proof of the dual optimization problem and its 

application to the optimal material distribution of SiC/graphene 

composite 
 

 

Ji-Huan He 1 

1 National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow 

University, Suzhou, China,     

e-mail: hejihuan@suda.edu.cn 

 

 

Article Info  ABSTRACT 

Article history: 

Received November 3, 2020 

Revised December 13, 2020 

Accepted December 27, 2020 

 

 This paper presents a simple and direct proof of the dual optimization 

problem. The stationary conditions of the original and the dual problems are 

exactly equivalent, and the duality gap can be completely eliminated in the 

dual problem, where the maximal or minimal value is solved together with 

the stationary conditions of the dual problem and the original constraints. As 

an illustration, optimization of SiC/graphene composite is addressed with an 

objective of maximizing certain material properties under the constraint of a 

given strength. 
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1. Introduction 

Optimization is an important branch of mathematics that aims at finding the optimal solution (maximum 

or minimum) of a given problem and under given constraints. The problem is described by an objective 

function, the minimum or maximum of which is sought in a subspace of allowable solutions defined by the 

constraint functions. Optimization problems arise in all engineering disciplines. In particular, in mechanical 

engineering typical objectives include: 1) minimizing the energy necessary for various processes; 2) 

optimizing material usage, which implies minimizing the weight in various structural designs; 3) optimizing 

the material design so as to maximize the ‘positive’ properties such as strength, stiffness, conductivity, or 

minimize ‘negative’ properties like corrosion, abrasion, etc.  

The final objective is to optimize the complete mechanical systems. In most cases, however, this is a 

cumbersome task, often involving multi-criteria optimization, whereby optimization procedures according to 

various criteria/objectives can even be conflicting. Various techniques have been developed for this purpose 

ranging from rigorous mathematical techniques such as derivative-based optimization and up to modern 

heuristic methods that aim at sufficiently good solutions rather than the absolute optimum. In many cases, it 

is also sufficient to optimize individual components of the system and then simply assemble the entire 

system. This is obviously a simplified approach compared to considering the system as a whole, but it 

produces satisfactory results on many occasions.    
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Obviously, material design optimization plays an important role in mechanical engineering for an optimal 

material distribution or a minimal cost under various constraints (Hu, Yao, Huang, 2020). 

The method of Lagrange multipliers as an approach has been extensively practiced in economics (Besada 

& Mirás, 2002; Beviá & Corchón, 2016; Caputo, 2001; Chatelain, 2000; Haeser & de Melo, 2015; He, 2017; 

Juhl, 2004; Ponthiere, 2016; Weber, 1998), and its duality principle (Boyd & Vandenberghe, 2004; Magno, 

et al., 2017) is also widely used in economics. For example, the original optimal problem is to maximize its 

profit of a factory, then its dual problem is to minimize the cost. Depending on the type of problem to be 

resolved, the same approach can be successfully applied in other disciplines, including mechanical 

engineering. In this short letter we give a direct proof of the dual optimization problem without using the 

Lagrange multiplier theory. 

2. The dual optimization problem 

To begin with the duality principle, we consider a standard optimization problem  

1 2Maximize ( , )F x x                                  (1) 

1 2Subject to ( , ) 0G x x                                 (2) 

The stationary condition is to maximize F, this requires (He, 2008; Qin & Ge, 2010)  

1 2 1 2

1 2

( , ) 0
F F

dF x x dx dx
x x

 
  
 

                       (3) 

Hereby 
1dx  and 

2dx  are not independent, their variations should follow the requirement given in Eq. (2), that 

is  

1 2 1 2

1 2

( , ) 0
G G

dG x x dx dx
x x

 
  
 

                       (4) 

From Eqs.(3) and (4), we have the following stationary condition:  

1 2

1 2

0

F F

x x

G G

x x

 

 


 

 

                            (5) 

Eq. (5) can also be derived by using He’s brackets (He,2008 ; Qin & Ge, 2010). Now we give the dual 

optimization problem: 

1 2Minimize ( , )G x x                                  (6) 

1 2 maxSubject to ( , )F x x F                                (7) 

Remark 1. 

In order to eliminate the duality gap (Boyd & Vandenberghe, 2004), 
1 2 max( , )F x x F  in stead of 

1 2 0( , )F x x F , where 
maxF  the optimal value, 

0F  is a constant.  

The  stationary condition of the dual problem can be readily obtained, which is(He,2008 ; Qin & Ge, 

2010) 

1 2

1 2

0

G G

x x

F F

x x

 

 


 

 

                            (8) 

Eq. (8) is equivalent to Eq. (5), and the optimal solution is obtained by solving Eq. (8) and Eq. (7) 

simultaneously.  

For multiple constraints, we can obtain a similar result. Consider the following equality-constrained 

problem:  
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1 2 3Minimize ( , , )F x x x                         (9) 

1 2 3 1 2 3Subject to ( , , ) 0, ( , , ) 0G x x x H x x x                 (10) 

The stationary condition is (He, 2008 ; Qin & Ge, 2010) 

1 2 3

1 2 3

1 2 3

0

x x x

x x x

x x x

F F F

G G G

H H H

                             (12) 

Its dual optimization problem is  

1 2 3Maximize ( , , )G x x x                         (13) 

1 2 3 min 1 2 3Subject to ( , , ) , ( , , ) 0F x x x F H x x x                 (14) 

Remark 2. 

Hereby 
minF   is the optimal value of the original optimal problem, no duality gap occurs.  

The stationary condition of the dual problem is (He,2008; Qin & Ge, 2010)  

1 2 3

1 2 3

1 2 3

0

x x x

x x x

x x x

G G G

F F F

H H H

                 (15) 

Eq. (15) is equivalent to Eq. (12), and the optimal solution is obtained by solving Eqs. (15) and (14) and 

the first constraint of Eq. (10) simultaneously.  

An example is given below (Izmailov & Solodov, 2009) 

2 2 2

1 2 3 1 2 3Minimize ( , , )F x x x x x x                           (16) 

2 2 2

1 2 3 1 2 3 1 2 3 1 3Subject to ( , , ) , ( , , )G x x x x x x H x x x x x                   (17) 

The stationary condition is(He,2008 ; Qin & Ge, 2010)  

1 2 3

1 2 3

1 2 3

1 2 3

2 2 2 2 2

1 2 3 1 2 3 2 3 2 1 2 1 2

3 1

2 2 2

2 2 2 4 4 4 4 8 0

0

x x x

x x x

x x x

F F F x x x

G G G x x x x x x x x x x x x x

x xH H H



         (18) 

Solving Eqs. (17) and (18) results in the optimal solution 
1 2( *, *) (0,0)x x  . 

Its dual optimization problem is  

2 2 2

1 2 3 1 2 3Maximize ( , , )G x x x x x x                           (19) 

2 2 2

1 2 3 1 2 3 min 1 2 3 1 3Subject to ( , , ) , ( , , )F x x x x x x F H x x x x x                    (20) 

The stationary equation is  

1 2 3

1 2 3

1 2 3

1 2 3

2

1 2 3 1 2

3 1

2 2 2

2 2 2 8 0

0

x x x

x x x

x x x

G G G x x x

F F F x x x x x

x xH H H



                (21) 

The optimal solution can be easily obtained, which is 
1 2 min( *, *, ) (0,0,0)x x F  . 
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3. An application 

As an application, we consider a SiC/graphene composite (Zuo & Liu, 2021). We assume that the 

concentration of graphene is  , according to Zuo-Liu’s formulation, the composite’s conductivity can be 

written as (Zuo & Liu, 2021)  

1.25

0C C k           (21) 

where C is the conductivity of the composite, 
0C  is the carborundum’s conductivity, k is a constant.  

The composite’s stress, according to o Zuo-Liu’s formulation (Zuo &Liu, 2021) 

2/3

0

2/3
=

1+

a

b

 





                        (22) 

where 
0  is the stress without graphene. We assume that  

0  and 
0C  have the following linear relationship 

0 0C                            (23) 

The optimal problem is  

Maximize 
1.25

0C k                               (24) 

Subject to 
2/3

0

2/3
=

1+

a

b

 





                               (25) 

Its stationary condition is  

0.25

1/3 2/3 1/3 2/32 2
00 3 3

2/3 2/3 2

1.25

0(1+ ) ( )

1+ (1+ )

k

a b b a

b b

 

    

 

             (26) 

Its dual optimization problem is  

Maximize 
2/3

0

2/3
=

1+

a

b

 





                        (27) 

Subject to 
1.25

0 max=Ck                      (28) 

For given parameters involved in Eqs. (24) and (25), the optimal value can be easily solved. 

 

4. Conclusions 

In this letter, optimization is addressed as an important method used in engineering to produce best or 

nearly best results under given circumstances. A direct proof of the duality principle in optimization is given. 

As the concept of the dual optimization is widely adopted in economics and engineering, this paper gives a 

strictly mathematical foundation for the dual optimization. Furthermore, the duality gap (Boyd & 

Vandenberghe, 2004) can be completely eliminated. This important property is successfully demonstrated in 

the task of optimizing material properties of a SiC/graphene composite. 
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