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 Spence's self-similarity approach is often preferred to an incremental method 

for solving plane, non-slipping normal contacts of dissimilar elastic solids 

under progressive loading. The number of plane contact problems solved in 

this way so far is nevertheless very limited, since explicit expressions 

especially for the pressure distribution and the tangential tractions within the 

contact area require the solution of complicated singular integral equations. 

In contrast, the application of the incremental method leads to much simpler 

integral equations, which are derived here and applied to solve some new 

non-slipping contact problems including the one characterized by an initial 

power-law gap profile function. The incremental method is also capable to 

determine the so-called interface mismatch eigenstrain. In Spence's method, 

however, the determination of its magnitude represents a mandatory step 

within the solution procedure. By means of a comprehensive comparison of 

both methods this work provides new insights into the solution of non-

slipping plane normal contact problems including explicit analytical 

solutions for the interface mismatch eigenstrain. 
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1. Introduction 

When solving contact problems analytically, friction is often neglected, or bodies made of elastically 

similar materials are assumed. These two idealizing assumptions lead to Cauchy integral equations of the first 

kind, the solution of which is straightforward (Johnson, 1985). However, the solution is much more 

complicated if friction and/or elastic mismatch are taken into account, since this introduces coupling between 

normal and tangential effects. In practically all contact mechanics applications from the micro- to the 

macroscale tangential or frictional forces are present. As an example, take (wear) particles within the 

interface layer between two bodies that move relative to each other. When the wear particles come into 

contact with the surfaces of the two bodies, different contact states can arise, from partial slip to gross sliding 

or rolling (Li, 2020; de Payrebrune, 2022). Adhesion can also play a role and the corresponding tangential 

traction due to elastic mismatch would influence the adhesive behavior of particles. This is particularly 

important for applications on smaller scales such as cell adhesion, biological attachment devices (Chen & 

Gao, 2007) or designing of micro-electro-mechanical systems (MEMS) involving isotropic elastic solids and 

piezoelectric materials (Luo et al., 2022).  

It is well known that even under pure external normal loading tangential tractions are generated within the 

contact area of two elastically dissimilar bodies. If a finite coefficient of friction is assumed, frictional slip in 

an edge region is inevitable. Such normal contact problems, involving a contact area composed of an inner 

stick and an outer slip area, can usually only be solved numerically. Spence (1973) gave a numerical solution 
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for the flat-ended punch contact with finite friction as well as an analytical solution neglecting the influence 

of the tangential tractions on the normal displacement and thus the pressure distribution (Goodman 

approximation). Spence has also proven that during progressive loading the ratio between the stick area and 

the contact area remains constant. Furthermore, this ratio is for all power-law indenters equal to the ratio 

obtained from the flat-ended punch problem. Nowell et al. (1988) solved the corresponding problem between 

dissimilar elastic cylinders. They also first provided an analytical solution applying the Goodman 

approximation and then a numerical solution based on Gauss Chebyshev quadrature. Zhupanska & Ulitko 

(2005) solved the same problem in a completely different mathematically complex way. They started from 

the general Papkovich-Neuber solutions, introduced very specific bipolar coordinates and apply the Wiener-

Hopf technique to find solutions in the form of infinite series. Like Nowell et al., Zhupanska & Utlitko used 

Spence's self-similarity approach in order to specify the shape of the relative tangential strains within the 

stick regions.  

The same approach is commonly used to develop analytical solutions for the simpler but still very 

complex limiting case of non-slipping normal contact where it is assumed that the coefficient of friction is 

sufficiently high to prevent any slip across the entire contact area. Adapted from the work of Spence (1968), 

Figure 1 shows an example of such a normal contact for the special case of one rigid and one elastic body. 

Material particles from the surface of the half plane exhibit different tangential displacements before they 

come into contact with the indenter during progressive loading. These tangential displacements remain 

unchanged in the course of further indentation and the associated growth of the contact area. This is 

illustrated in Figure 1 by the motion paths of surface particles. The dashed line indicates the location of the 

points that delimit the actual contact widths.  

 

Figure 1. Indentation of a non-conformal rigid punch in the elastic half-plane under no-slip 

condition with indicated trajectories of surface particles during progressive loading 

Several publications are dedicated to solving the axisymmetric non-slipping normal contact, often with 

additional consideration of molecular adhesion (Zhupanska, 2009; Borodich et al., 2014). Popov et al. (2019) 

provide a very simple and compact solution based on the method of dimensionality reduction (Popov & Heß, 

2015; Heß, 2011). Popov (1973) and later Guo et al. (2011) accounted for the influence of an elastic half-

space with a power-law grading. However, the pioneering works originate from Mossakovskii (1963) and 

Spence (1968). Plane normal contacts under full stick condition, on the other hand, have been treated less 

frequently and, apart from a few exceptions, there is a lack of explicit solutions. To the best of the author's 

knowledge, even for the simple wedge-shaped normal contact, complete closed-form analytical solutions 

especially for the pressure and tangential tractions have not yet been derived. This is mainly due to the fact 

that the common solution method involves (strongly) singular integral equations of the second kind, whose 

explicit solution is challenging. By means of a limiting analysis of the contact with finite friction, Zhupanska 

& Ulitko (2005) obtained some analytical solutions in form of infinite series for the non-slipping normal 

contact between a rigid cylinder and an elastic half-plane. Complete solutions were presented by Zhupanska 

(2012) in a later publication. In the same year Ma & Korsunsky (2012) present an alternative solution based 

on the Kolosov-Muskhelishvili theory of complex stress functions, which include the case of an elastic-to-

elastic contact. Chen & Gao (2006) considered the non-slipping adhesive contact of an elastic cylinder on a 

stretched substrate and derived a solution in form of integrals which were subsequently evaluated 

numerically. In a recent paper, Ma & Korsunsky (2022) provide complete solutions in the form of integrals 

also for the non-slipping normal contact between two elastic bodies whose initial gap is characterized by a 

monomial function. One of their key results is the frozen-in constant or the so-called interface mismatch 

eigenstrain, for which they provide integrals including its approximate solutions. As in the work of Ma and 

Korsunsky, the (strongly) singular integral equations of the second kind are usually taken as the starting point 

of the solution procedure and subsequently the form of the relative tangential strains within the contact region 
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is formulated by means of Spence's self-similarity approach. Although a general solution in the form of 

integrals is available, their evaluation is mathematically so difficult, that, in particular for the pressure 

distribution and the tangential tractions, closed-form analytical expressions have only been derived for a few 

exceptions to date. In this paper, we will use this method to derive a few more analytical solutions. However, 

the focus is on another solution procedure  based on the incremental method which allows to derive explicit 

analytical solutions in a much simpler way. It is capable to determine the interface mismatch eigenstrain as 

well. 

The present work is structured as follows. Section 2 repeats the mathematical formulation of the problem 

including the singular integral equations of the second kind and the boundary conditions. At the beginning of 

section 3, the solutions of this singular integral equations are given in terms of integrals to be solved and then 

applied to determine the analytical solutions for the non-slipping flat-punch contact. Next, based on 

increments of the flat-punch solution, the new integral equations are deduced, which possess only a weak 

boundary singularity and are therefore much easier to solve. Section 4 focuses on the derivation of explicit 

analytical solutions for selected examples, including the symmetric contact with an initial monomial gap 

profile. The wedge-shaped contact and the contact with an initial parabola gap emerge as special cases from 

that. Section 5 finally presents explicit analytical solutions for the interface mismatch eigenstrain taking a 

monomial gap profile function into account. 

2. Mathematical Formulation of non-slipping Contact Problems 

We begin our considerations with two symmetric, elastic solids that make contact over an (infinite) strip 

of width 2a. Both bodies are regarded as half-spaces, and the contact is caused by a pure normal line loading. 

Figure 2 shows such a plane strain inducing contact.  

 

Figure 2. Schematic illustration of a plane contact between two curved, elastic half-spaces under 

pure normal loading 

According to Newton's third law, the distributed pressure p(x) and tangential tractions q(x) act in opposite 

directions on both bodies within the contact interface resulting in relative surface displacements, denoted by 
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: , :
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u u u u u u= − = − .  (1) 

Since the displacements in two-dimensional contact problems are generally logarithmically unbounded 

relative to the point at infinity, it is common to prefer their derivatives for further analysis. This results in the 

following coupled integral equations (Johnson, 1985) 
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where the effective elastic modulus (composite modulus) and Dundurs’ elastic mismatch parameter are 

defined by  
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By multiplying Eq. (3) by the imaginary unit and then adding Eq. (2), the two coupled integral equations can 

be converted into a single complex integral equation 

 

( )
( )

( ) ( )
*d

2

a

x y

a

Fi E
F x u x iu x

x

 

  −

  − = − −
 −


,  (5) 

with the complex loading function 

 ( ) ( ) ( ) , 1F x p x iq x i= + = − .  (6) 

Up to this point, Eqs. (2) and (3) as well as (5) still apply regardless of the prevailing boundary conditions. 

For a non-slipping plane normal contact between two bodies with different elastic properties, the 

following boundary conditions must be satisfied: 

 ( ) ( ) ( ) ( ) ( ), 0, , ,
x y

u x a u x f x q x p x x a
a


  = = −  


.  (7) 

As usual, the second condition relates the slope of the surface to the a priori given derivative of the initial gap 

function f (x). The third condition aims to ensure full stick in the contact area, i.e., the magnitude of the 

tangential tractions is insufficient to cause any slip. The first condition, on the other hand, states that the 

relative tangential displacements within the contact area and thus the relative tangential strains are 

independent of the contact half-width a. In other words, the relative strain at each point x of the contact area 

does not change during progressive loading, even though the contact area increases. At first glance this 

condition makes no prediction about the actual distribution of the relative tangential strains required on the 

right-hand side of Eq. (5). However, thanks to Spence's self-similarity approach (Spence, 1968) it is possible 

to infer the shape of the relative tangential strains within the contact area from the shape of the profile. This 

is explained in more detail below. 

3. Methods of Solution 

3.1. Singular Integral Equations of the Second Kind 

To determine the pressure and tangential tractions within the contact area of the symmetric normal 

contact, it is necessary to solve Eq. (5). This is a singular integral equation of the second kind, the solution of 

which was treated in detail by Söhngen (1954): 

 

( )
( )

( ) ( )

( ) ( )

( )

*

2

* 1
2

22 2
1

2 1

1 1 2 1
1 d

1 1 12 1 1

x y

i i

x y

E
F t u t iu t

a

u s iu st P iE s
s s

t s a t st a

 





  −

  = − +
 −

  −+ −   
 + + −   

− − + −    − − 



,  (8) 

with the dimensionless variables t = x/a and s = ξ/a as well as the new introduced material mismatch 

parameter  
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The solution applies to contacts that exhibit singular pressure and tangential stresses at both edges, such as 

the indentation of a flat punch with a symmetric cap of any shape under sufficiently high load, so that the cap 

is in complete contact and the displacements at the contact edges exhibit kinks. However, the solution also 

holds for contact problems in which singular stresses occur at one edge and bounded ones at the other, or in 

which bounded pressure and tangential stresses are present at both edges. We restrict ourselves to the latter 

case, for which the conditions F(t = ±1) = 0 result in both the calculation equation for the line load P  
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and the consistency condition 
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Taking Eqs. (10) and (11) into account, the solution Eq. (8) for the pressure and tangential tractions within 

the contact area is simplified to 
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Ma & Korsunsky (2012) present an alternative derivation of the above equations based on the Kolosov-

Muskhelishvili theory of complex stress functions and taking into account the displacement boundary 

conditions.  

Once the pressure and tangential tractions within the contact area have been determined, the slope and 

strain of the surface outside the contact area can in turn be determined from Eqs. (3) and (2). If we consider 

that no pressure and tangential stresses act on the surface outside the contact area (|t| > 1) it follows 
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3.1.1. Explicit Solutions for Indentation by a Flat Punch 

Since the flat punch solution is necessary for the application of the incremental method described below, 

we first consider this problem which is depicted in Figure 3.  

 

Figure 3. Indentation of an elastic half-plane by a rigid flat punch with the contact half-width a 

The corresponding displacement boundary conditions are straightforward, 

 ( ) ( )0, 0,
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Inserting the boundary conditions (14) into Eq. (8) yields 
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and, after separating the real and imaginary parts, the distribution of the pressure and tangential stresses 

within the contact area are found: 
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Note that the solutions (16) and (17) were first developed by Abramov (1937) using the Mellin transform. To 

determine the slope and strain of the surface outside the contact area, Eq. (15) has to be inserted into Eq. (13) 
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The calculation of the integral is carried out by Bufler (1959). After appropriate substitution, application of 

the residual method and separation into real and imaginary parts, the strain and slope of the surface outside 

the contact area are determined: 
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3.1.2. The Self-Similarity Approach by Spence for Convex Profiles 

The general solutions (8) and (12) of the singular integral equations of the second kind contain integrals 

whose calculation requires both the slope and the tangential strain in the loaded area. At first glance it seems 

that apart from a few exceptions such as the indentation by a flat punch, the tangential strains are not known 

a priori. However, Spence (1968) established a self-similarity approach, which predicts geometrically similar 

stress and displacement fields during progressive loading for any indenter with a polynomial profile. Even 

though he initially used this approach only for solving axisymmetric full-stick normal contacts, he already 

stated its transfer to plane contacts. According to Spence, the distribution of the relative tangential strains 

within the contact area, also termed interface mismatch eigenstrain, can be deduced from the initial gap 

function/profile apart from a multiplicative constant. The latter must be determined subsequently from the 

condition that the stresses at the contact edge vanish. We will apply this often mathematically challenging 

solution method to an example in Chapter 4. 

A much simpler solution method, for which the interface mismatch eigenstrain does not need to be known 

in advance, is presented in the next section.  

3.2. Singular Integral Equations arising from the Incremental Method by Mossakovskii 

According to an approach originated by Mossakovskii (1963) for axisymmetric contact problems and 

revitalized by Jäger (2005), the indentation of an arbitrary convex-shaped body into the elastic half-plane can 

be described as a sequence of incremental flat punch indentations with different contact half-widths. 

Therefore, the complete solution of the contact problem (irrespective whether frictionless or under full-stick 

condition) can be constructed by an appropriate superposition of incremental flat punch solutions with 

different contact half-widths. Using Eqs. (16) and (17), the incremental contributions of a flat-ended punch of 

half-width 𝑎̃ to pressure and tangential tractions are 
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Obviously, only that flat punch solutions corresponding to half-widths | | a ax   contribute to the stresses at 

a point x within the contact area. Hence after introducing the dimensionless variables t = x/a and s = a /a and 

use of the compact complex notation the following formula apply 
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Calculation formulae for the displacement derivatives can be deduced in a similar way starting from Eqs. 

(19) and (20), resulting in 
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where the upper integral limit depends on whether the displacement derivatives are sought inside or outside 

of the contact area. Compared to the integrals in Eqs. (12) and (13) for calculating the stresses and 

displacement derivatives, the integrands of the above derived calculation integrals (23) and (24) possess only 

a weak singularity and are therefore considerably easier to solve, both analytically and numerically. 

However, their application requires the line load P as a function of the contact half-width. Although this 

relationship can in principle be determined from Eq. (10), it would not avoid the problem of a priori unknown 

tangential strains. This is remedied by evaluating the displacement boundary condition in the normal 

direction (the second condition in Eq. (7)) which relates the slope of the surface to the a priori given 

derivative of the initial gap function f (x). In this way, by taking the imaginary part of Eq. (24) into account, 

we obtain 
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The author is not aware of a general inversion of this integral equation to P'(s). However, if the derivative of 

the profile function on the right-hand side can be developed into a power series, then P'(s) can also be 

specified as a power series. As an example, we will prove in the next chapter that a monomial profile 

function yields a dependence of the line load on the contact half-width, which is characterized by a monomial 

function of the same order.  

Finally, it should be noted that Barber (2018) already lists corresponding general equations, with the 

difference that he does not use the explicit solutions for the strain and slope of the surface outside the contact 

area induced by a flat-ended punch according to Eqs. (19) and (20). 

4. Derivation of Explicit Solutions for Selected Non-Slipping Contact Problems 

To demonstrate the advantages of the incremental method over the solutions of the singular integral 

equations of second kind in conjunction with Spence's self-similarity approach, the contact problem 

characterized by a monomial initial gap is first solved in both ways. Subsequently, the wedge-shaped contact 

and the contact between parabolic cylinders are discussed in detail. 

4.1. Symmetric Contact with Initial Monomial Gap Profile 

In the following we solve the non-slipping normal contact between two dissimilar elastic bodies whose 

initial gap is specified by a monomial function according to  

 ( ) , 0, 0
n

n n
f x A x A n=   .  (26) 

4.1.1. Line load as a Function of the Contact Half-width: Solution by Spence Self-Similarity Approach 

By taking the above monomial profile into account the slope of the surface within the contact area becomes 

 ( ) ( )
1

sgn ,
n

y n
u x nA x x x a

− = −  ,  (27) 

and according to Spence the relative tangential strains within the contact area are distributed by 

 ( )
1

,
n

x n
u x nB x x a

− =  .  (28) 
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Bn is a constant that is independent of the contact half-width a but a priori unknown. Multiplied by the 

exponent n it represents the so-called frozen-in strain constant. It is determined by means of the consistency 

condition (11). This generally leads to 

 1
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n

n n

n

L
B iA

K

−

−

= − ,  (29) 
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The above governing equations for the frozen-in constant are one of the key results of a recent publication 

by Ma & Korsunsky (2022). Once the constant has been calculated, the magnitude of the interface mismatch 

eigenstrain according to Eq. (28) is known as well. However, the determination of this constant is also 

mandatory for the further calculation of the line load P as a function of the contact half-width a according to 

Eq. (10) and for the calculation of the contact stresses according to Eq. (12).  

By means of partial integration, it is easy to prove that the following recursion formulas apply 

      
2 1
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, 1 , , , 2

n n n
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K L K L L K n

n n
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− −
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,  (32) 

 ( )1 0 1 0
2 1 , 2K i L L i K = − = − .  (33) 

The solutions of the integrals for higher exponents n are therefore determined solely by the solutions of the 

basic integrals corresponding to n = 0. For the determination of the latter, we make use of the substitution 

( )tanh 2s u= , which then leads to well-known integrals given by Gradshteyn und Ryzhik (2014) in Sect. 

3.981 on p. 513: 
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Herein, ψ(x) denotes the digamma function, also known as the psi-function, which specifies the logarithmic 

derivative of the gamma function 

 ( ) ( )( )
( )

( )

d
: ln

d

x
x x

x x



=  =


.  (36) 

To determine the line load as a function of the contact half-width, the boundary conditions, Eqs. (27) and 

(28), are now inserted into Eq. (10) and the relationship (29) subsequently taken into account 

 ( ) ( )
**

1 1

2 2
12 1 2 1

nn

n n n n n

n n n n
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.  (37) 

From the recursion formulas (32) it is easy to deduce 

 ( ) ( )( )1 1 1 2 1 2 1 0 1 0 0
1 2

n n n n n n n n
n K K L L n K K L L K K L L K

− − − − − −
− = − − = − = ,  (38) 

so that after insertion in Eq. (37) a quite simple expression for the line load as a function of the contact half-

width is obtained 
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where 
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.  (40) 

The factor κ is given for selected exponents of the initial monomial gap function and absolute values of 

Dundurs’ second material mismatch parameter in Table 1. For elastically similar materials (β = 0), its values 

correspond to those for frictionless contact (Johnson, 1985).  

Table 1. Factor κ for selected absolute values of Dundurs’ second material mismatch constant and 

exponents of the initial monomial gap function 

 Exponent n of the monomial profile function 

1 2 3 4 5 6 7 8 

|β| 

0 1 0.7854 0.6667 0.5890 0.5333 0.4909 0.4571 0.4295 

0.3 1.0483 0.8429 0.7271 0.6504 0.5949 0.5523 0.5183 0.4903 

0.5 1.1547 0.9789 0.8771 0.8087 0.7590 0.7206 0.6900 0.6648 

 

 

4.1.2. Line load as a Function of the Contact Half-width: Solution by the Incremental Method 

To determine the line load as a function of the contact half-width using the incremental method, we must 

first derivate the profile function given in Eq. (26) and insert it into Eq (25). This leads to  

 
( ) !

* 2 2
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 .  (41) 

Now we assume that the normal line load we are looking for is a one-term polynomial of the same order n 

in the contact half-width and that only the polynomial coefficient remains to be determined.  

 ( ) :
n

n
P a D a= .  (42) 

After inserting Eq. (42) into Eq. (41) and linear substitution, it follows  
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 .  (43) 

In the last expression on the right-hand side, we have taken the integral definition from Eq. (30) and also 

considered the point-symmetric argument of the cosine in u. After inserting the coefficient into Eq. (42), the 

function we are looking for is determined.  

 ( )
*

1

n

n

n

E A a
P a

K



−

= .  (44) 

The result from Eq. (44) of course agrees with the result from Eq. (39). Note that the integral Kn-1 was also 

solved explicitly according to Eq. (40). For the same line load P, the contact half-width in the non-slipping 

normal contact is smaller than that in frictionless contact. This is proven in Figure 4, which shows the ratio of 

the contact half-widths against the magnitude of Dundurs’ second material constant plotted for different 

monomial power profiles. a0 denotes the half-width of the corresponding frictionless contact. It is evident 

that the area reduction is greatest for strongest coupling, i.e., |β| = 0.5. However, with increasing exponent of 

the monomial profile function, the area reduction decreases in percentage terms. 
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Figure 4. Normalized contact half-width as a function of the magnitude of Dundurs’ second 

material constant plotted for different monomial power profiles 

The derivation using the incremental method has proven to be much simpler than that applying the singular 

integral equations of the second kind in combination with Spence's self-similarity approach. The calculation 

by the incremental method can be simplified even further since, strictly speaking, it is sufficient to evaluate 

Eq. (41) at the point t = 1 (and thus at the contact edge). 

4.1.3. Pressure and Tangential Tractions  

To calculate the pressure and tangential tractions within the contact area, we can use either Eq. (12) or Eq. 

(23). Again, we prefer the formula derived from the incremental method, because the line load has already 

been determined as a function of the contact half-width and the integral seems easier to solve. From Eq. (44) 

we easily obtain 

 ( ) ( ) 1n
P s nP a s

− =   (45) 

and after inserting into Eq. (23) the stresses have to be calculated from 
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Applying the substitution  

 ( ) ( )
1

with :
1

ts t
t u t

s t t
 

−−
= =

+ +
  (47) 

provides 
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The remaining integral on the right-hand side represents an Appell function F1(…), so that the result for the 

(complex defined) stresses can finally be expressed as follows 
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.  (49) 

The Appell function as a generalization of the hypergeometric function to two variables is also defined by the 

following double series 
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We leave it at the above compact, complex form (49) and dispense with the explicit formation of real and 

imaginary parts, which represent the pressure and tangential tractions according to the definition (6). Further 

simplifications are possible for explicit specifications of n and discussed in more detail below for the wedge-

shaped contact (n = 1) and the contact between parabolic cylinders (n = 2).  

Figure 5 illustrates the pressure distribution for selected exponents of the initial monomial gap function. 

The solid lines represent the case of strongly different elastic materials (|β| = 0.5) and the dashed lines the 

corresponding case for elastically similar materials (β = 0). It can be clearly seen that the pressure in the 

center is higher due to the coupling. For exponents greater than 2, however, the maximum pressure is no 

longer in the center. Instead, two maxima are formed symmetrically to the axis of symmetry, which move 

closer to the edge as the exponent increases. These maxima are weakened by the coupling compared to the 

frictionless case. 

 

Figure 5. Normalized pressure distribution for selected exponents n of the initial, monomial gap 

function: Solid lines indicate strong coupling |β| = 0.5, dashed lines the corresponding frictionless 

case β = 0 

The tangential stresses (to be continued point-symmetrically) for the case of strong coupling (|β| = 0.5)  

illustrated in Figure 6 show that the magnitude of the maxima increases as the exponent grows and also 

moves towards the contact edge. The magnitude of the tangential stresses is by no means negligible. For 

larger exponents in particular, the maximum values exceed those of the pressure distribution. There is no 

need to mention that in the case of elastically similar materials (β = 0), no tangential stresses occur in the 

contact interface. 
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Figure 6. Normalized tangential tractions for selected exponents n of the initial, monomial gap 

function and strong coupling |β| = 0.5 

4.2. Symmetric Wedge Contact 

Now, we consider the non-slipping normal contact with a wedge-shaped initial gap profile. This means 

that the bodies are brought closer together without load until they touch at exactly one point. The gap 

between the bodies that then exists is characterized by a linear function. Figure 7 shows an exemplary special 

case of two bodies under normal loading, where the upper one is assumed to be a very stiff wedge and the 

lower one a soft half-plane.  

 

Figure 7. Indentation of an elastic half-plane by a very stiff (rigid) wedge with the slope angle α 

under full stick condition 

 

In this case, the initial gap is given by the shape of the wedge 

 ( ) tanf x x x =  ,  (51) 

where small slope angles are required. We can take the line load as a function of the contact half-width 

directly from Eq. (44) by inserting n = 1. This results in 
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E A a

P a E a
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
 = = ,   (52) 

where we in addition made use of Eq. (34). Taking into account the definition of the material mismatch 

parameter η according to Eq. (9), we finally get 
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To calculate the pressure and tangential stresses, it would also be possible to insert n = 1 in the compact form 

solution (49), but its reduction seems to be more time-consuming than starting again directly from Eq. (23). 

By taking Eq. (53) into account, the following integral must be solved 
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 .  (54) 

After substitution with ( ) ( )u s t s t= − + , an integral representation of the incomplete Beta function 

denoted by B(...) remains, so that the solution can be written down as follows: 
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The incomplete Beta function is also defined by 
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with the hypergeometric function  
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If this series representation is used and the real and imaginary parts are formed, a few algebraic 

transformations result in the following pressure and tangential tractions: 

 

( )
( )

( )
( )

1

21
2

2 22 1
0

2

1

2

2 21
0

2

, cos ln
1

sgn sin ln

k

k

k

k

a xkP a x
p x a

a x a xka

a x a x
x

a x a xk


 






+


=

+


=

 
 −+  +   

=       + − + +−     
 

 
 −  +   

−       + − + +     
  





,  (58) 

 

( )
( )

( )
( )

1

21
2

2 22 1
0

2

1

2

2 21
0

2

, sin ln
1

sgn cos ln

k

k

k

k

a xkP a x
q x a

a x a xka

a x a x
x

a x a xk


 






+


=

+


=

 
 −+  +   

=       + − + +−     
 

 
 −  +   

+       + − + +     
  





.  (59) 

For selected material mismatch parameters β, Figure 8 presents the pressure distribution within the contact 

area, which has a singularity at the tip of the wedge-shaped indenter. The coordinate was normalized with the 

contact half-width a0, that would occur in the frictionless state. Apart from a reduced contact half-width, that 

reached 13.4 percent for β = 0.5, the curves for different mismatch parameters exhibit no significant 

differences. 
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Figure 8. Normalized curves of the pressure when an elastic half-plane is indented by an elastic 

wedge for selected values of Dundurs’ second bimaterial constant 

The distribution of the tangential tractions in Figure 9, however, reveals a characteristic feature. Considering 

that they are distributed point-symmetrically to the origin, a jump can be observed at the point x = 0, which is 

due to the non-differentiability of the profile at this point. 

 

Figure 9. Normalized curves of the tangential tractions within the contact area of the non-slipping 

normal contact between an elastic wedge and an elastic half-plane for selected values of Dundurs’ 

second bimaterial constant 

4.3. Symmetric Parabola Contact 

In the following, we consider the classic case of an initial gap in the form of a parabola, which both 

Zhupanska (2012) and Ma & Korsunsky (2012) treated in different ways but using Spence's self-similarity 

approach. Figure 10 schematically displays the limiting case of a rigid parabolic cylinder with the radius of 

curvature R, which is pressed into an elastic half-plane under full-stick assumption.  
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Figure 10. Indentation of an elastic half-plane by a very stiff (rigid) parabolic cylinder with radius 

of curvature R under full stick condition 

The profile function is given by 

 ( )
2

,
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x
f x x a

R
=  .  (60) 

Now, we again prefer to apply the equations that have emerged from the incremental method. For this 

purpose, the line load is required as a function of the half-contact width, which results from Eq. (44) if n = 2 

is inserted 
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Taking Eqs. (33) and (35) into account, then it follows 
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Now, since the line load is known as a function of the contact half-width, Eq. (23) can be used to calculate 

the pressure and tangential tractions. A reduction of the double sum of the Appell function in Eq. (49) is also 

possible, but appears to be more elaborate. By means of Eq. (62) and using partial integration, we obtain 
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A solution of the remaining integral on the right-hand side has already been given when dealing with the 

wedge-shaped contact from the last section (see Eqs. (54) to (55)) 
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After taking the real and imaginary part as well as using the series representation according to Eqs. (56) and 

(57) a few algebraic transformations yield the following solutions 
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Note that similar power series representations leading to equal values were determined by Zhupanska (2012) 

by a different method. Figure 11 shows the distribution of pressure within the contact area for selected 

material mismatch parameters β under the same applied line load P. It should be noted that the coordinate 

was normalized with the contact half-width a0, which would occur in the decoupled state (plane Hertzian 

contact). Similarly, the pressure distribution was related to the mean pressure of the uncoupled contact. While 

the normalized pressure maximum for strongly dissimilar materials (β = 0.5) is significantly greater than in 

the contact between bodies made of elastically similar materials (β = 0), the difference for realistic values β ≈ 

0.2-0.3 is much smaller. Therefore, the pressure distribution in this range is often approximated by that of the 

frictionless contact, which is tantamount to neglecting the influence of the tangential stresses on the normal 

displacement. 

 

Figure 11. Normalized curves of the pressure when an elastic half-plane is indented by an elastic 

parabolic cylinder for selected values of Dundurs’ second bimaterial constant 

However, the fact that the pressure contributes significantly to the tangential displacement and thus 

influence the distribution of the tangential tractions is supported by Figure 12.  
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Figure 12. Normalized tangential tractions within the non-slipping normal contact of an elastic 

parabolic cylinder and an elastic half-plane distinguished according to values of Dundurs’ second 

bimaterial constant 

5. The Interface Mismatch Eigenstrain 

Before material points of the two half-space surfaces come into contact during progressive loading, they 

undergo different tangential displacements because of material property mismatch. As soon as they make 

contact under full-stick condition, their relative tangential displacement and thus their relative tangential 

strain were frozen-in, i.e., they do not change when the size of the contact area increases due to further 

loading. The corresponding strain is termed frozen-in strain or interface mismatch eigenstrain. By exploiting 

Spence's self-similarity approach, that assumes their distribution to be consistent with the gap profile, we 

have already determined these strains for an initial monomial gap profile (see Eqs. (27) to (31)). But even 

without using self-similarity, their calculation is possible in a straightforward manner. For this purpose, we 

apply Eq. (24) within the contact area 

 ( )
( ) ( )
* 2 2

0

2sgn
sin ln d , 1

t

x

t P s t s
u t s t

E t st s



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− −  

 .  (67) 

Let us again suppose that the initial gap profile is specified by a monomial function according to Eq. (26) and 

the line load has already been determined as a function of the contact half-width. Then, after substituting Eq. 

(45) into Eq. (67) and taking Eq. (44) into account, it is easy to prove that holds 
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The integral on the right-hand side is part of the definition (31) and can for example be solved with recursion 

formulas (32) to (35). With this definition, the mismatch eigenstrain can finally be notated as follows 

 ( )
1 1

1

n n

x n

n

L
u x inA x

K

− −

−

 = − .  (69) 

Hence, the results (28) and (29) stemming from the self-similarity approach are verified. Relating the 

eigenstrain to the magnitude of the derivative of the profile function, yields the normalized frozen-in constant 
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Taking Eqs. (34) and (35) into account, for an initial wedge-shaped profile gap Eq. (70) provides 
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As a further example a parabolic profile gap leads to 
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If the difference of the digamma functions is replaced by infinite series, then alternatively holds 
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It should be mentioned that the frozen-in constants derived by Zhupanska (2012) and Ma & Korsunsky 

(2012) contain alternating series and thus seems to deviate from Eq. (73) at first glance. However, all 

formulations provide identical values for any material mismatch. For the two profiles focused above and 

other selected monomial profile functions, Figure 13 demonstrates the dependence of the normalized frozen-

in constant on Dundurs’ second bimaterial constant. The curves must be continued point-symmetrically to the 

origin. Ma & Korsunsky (2012) already pointed out that (the magnitude of) the normalized frozen-in constant 

(they termed it correlation coefficient) is gradually increasing with the order of the monomial function. 

 

Figure 13. Normalized frozen-in constant as a function of Dundurs’ second material mismatch 

parameter for selected exponents of the monomial gap function 

6. Conclusions 

In this work, we have deduced singular integral equations by means of the incremental method, which 

allow to solve plane non-slipping normal contacts in a much simpler way than the commonly used singular 

integral equations. On the one hand, this is due to the fact that the integrands only exhibit a weak boundary 

singularity and, on the other hand, that Spence's self-similarity approach and thus the prior calculation of the 

relative tangential strain are not required. However, the normal force as a function of the contact half-width 

must have been determined in advance. In this way, we were able to derive some new closed-form solutions, 

especially for the non-slipping normal contact between elastically dissimilar bodies whose initial gap profile 

is specified by a monomial function. Since the interface mismatch eigenstrain is also of interest for many 

practical contact problems, integral equations were also established for its calculation based on the 

incremental method. For the above-mentioned contact configuration, closed-form analytical solutions for 

these relative tangential strains were derived. For complex coupled problems, the Goodman approximation is 

often used to obtain an analytical approximate solution. Corresponding integral equations can also be 

developed using the incremental method. A major advantage of the Goodman approximation is that the 
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pressure distribution is taken from the frictionless contact and thus the normal force as a function of the 

contact half-width is a priori known. As an example, the simply derivable formula for calculating the 

tangential tractions is listed below 

 ( )
( )

2 2 2
ln d

a

x

P a a x
q x a

a xa x





 + 
=  

− −
 .  (74) 

In the present work, the incremental method was used to derive integral equations applicable for solving 

plane normal contacts under full stick condition. However, analogous equations can also be derived in the 

same way under the more realistic condition of partial slip. This is possible due to an inherent feature of all 

normal contact problems characterized by a convex initial gap function under partial slip, which goes back to 

a finding by Spence (1973). Accordingly, although both the stick area and the (total) contact area increase 

during progressive loading their ratio remains constant and is equal to the ratio obtained from the 

corresponding flat-ended punch problem. 

Acknowledgement: The author is grateful to Dr. Lifeng Ma for the professional discussions on normal 
contact problems under full stick condition.  
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