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ABSTRACT

We present a simple method to determine the stress state in a linear viscoelastic
half-space in frictionless unilateral normal contact with an axisymmetric
rigid indenter for arbitrary loading histories. The procedure consists in the
superposition of elastic solutions for flat punch or parabolic contact along the
line load within the framework of the method of dimensionality reduction.
We provide simple expressions for all stress components and the hydrostatic
pressure gradient, which is of particular interest in the biomechanical field.
The method brings advantages especially in its numerical application, since no
convolution in time over the entire contact history is necessary.
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1 Introduction
Lee (1955) firstly proposed a method to derive the viscoelastic solution for the frictionless normal con-

tact problem from the equivalent elastic problem by convolution with the time dependent relaxation function,
i.e. a multiplication in the Laplace-space – with the restriction that the contact area monotonically increases
with time. This idea, known as the “elastic-viscoelastic correspondence principle”, was later generalized by
Radok (1957), before Lee and Radok (1960) derived the solution for the contact of a parabolic indenter and a
viscoelastic half-space. The restriction of the monotonically increasing contact area was partially released by
Hunter (1960) and Graham (1965) to the case where it has a single maximum and no minimum; the solutions
for arbitrary loading histories were ultimately found by Graham (1967) and Ting (1966, 1968).

Easy and fast solving of axisymmetric contact problems between viscoelastic bodies is also possible using
the method of dimensionality reduction (MDR), developed by Popov and Heß (2014) and originally intro-
duced for elastic media. The MDR consists in converting an originally three-dimensional contact problem to
a one-dimensional one with a Winkler foundation, which, however, has the same contact properties. Thus, the
complexity of the original contact problem is reduced. While the macroscopic parameters (i.e. contact force,
indentation depth and contact radius) are identical in both spaces, a set of transformation rules links load distri-
butions, displacements and the indenter profiles between spaces. It has quite recently been shown that the full
stress state beneath the contact surface in axisymmetric elastic normal contact problems can be determined by
superposition of flat punch (Forsbach 2020) or parabolic (Willert 2021a) solutions according to the transformed
shape of the indenter in the 1D-space within the framework of the MDR.

When it comes to viscoelastic media the MDR was introduced based on the Lee and Radok elastic-
viscoelastic correspondence principle (Popov and Heß 2014; Popov et al. 2018, 2019) – inheriting of its restric-
tion, i.e. the monotonically increasing contact radius. However Argatov and Popov (2016) extended the MDR
to the case where the contact radius has a single maximum while at the same time solving the rebound indenta-
tion problem, an important application of this solution to material testing. The big advantage of the viscoelastic
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MDR, especially when it comes to its numerical application, lies in the avoidance of the convolution from Lee
and Radok’s solution, since it is sufficient to follow the displacement of rheological elements, forming the
Winkler foundation and representing a certain material behavior, to yield the solution of the contact problem
– until now the solution of pressure and displacements in the contact plane. In the following we will present a
method on the basis of the MDR to determine the full stress state beneath the surface for arbitrary contact histo-
ries, without loosing the advantage of avoiding the convolution. As the procedure is applicable with any linear
operation on the stress components, we will also provide compact expressions for the hydrostatic pressure and
its gradient. The latter can be of interest for biomechanical applications, e.g. for the mechanical modelling of
biological joints and their regeneration, where the hydrostatic pressure gradient in the viscoelastic articular
cartilage in contact plays an important role (Leroy 2023; Popov et al. 2022).

After a brief overview of the viscoelastic MDR, we derive in the subsequent section two equations determin-
ing the stress state in the linear viscoelastic incompressible half-space beneath axisymmetric bodies in normal
contact by superposition of elastic flat-plunch or parabolic contact solutions. As an illustrative example, we
determine the hydrostatic pressure gradient in a viscoelastic half-space impacted by a rigid sphere before a
short conclusion closes the manuscript.

2 Method of dimensionality reduction for viscoelastic contacts

Let us first consider a rigid axisysmmetric frictionless indenter with a shape defined by the function f(r)
(with f(0) = 0 and f ′(r) > 0 for r > 0, the prime denoting a derivative in space) pressed into a linear
elastic half-space (with elastic modulus E0 and Poisson’s ratio ν) in the normal direction. The origin of the
cylindrical coordinates system (r, z) is located in the first point of contact, the z-axis pointing into the half-
space. Within the framework of the MDR this three-dimensional problem can be transformed into a one-
dimensional contact problem of a profile g(x) being pressed into a Winkler foundation with a stiffness per unit
length of E∗

0 = E0/(1− ν2). The relationship between g and f ist given by an Abel-like integral:

g(x) = |x|
∫ |x|

0

f ′(r)√
x2 − r2

dr. (1)

This immediately gives the relationship between the contact radius a and the indentation depth d, i.e. g(a) = d.
In analogy to the pressure distribution in 3D, in the 1D-space one can define a line load

qe(x) = E∗
0 (g(a)− g(x))H(a− x), (2)

– where H(a− x) is the Heaviside step function – from which the three-dimensional pressure distribution can
be deduced (Popov et al. 2019):

pe(r) = − 1

π

∫ ∞

r

q′e(x)√
x2 − r2

dx. (3)

Note that in the numerical application of the MDR, transformations (1) and (3) can be performed very effi-
ciently using FFT (Willert 2021b).

As shown by Forsbach (2020) not only the pressure distribution in the surface but also the full stress state
inside the elastic half-space can be obtained for an arbitrary axisymmetric indenter based on the profile g by
superposition of flat punch solutions:

σAS,e
ij (r, z, a) =

∫ a

0

σFP
ij (r, z, ã)

dFP
g′(ã)dã, (4)

where σFP
ij (r, z, ã) is the stress field generated by the indentation of the elastic half-space by a rigid cylindrical

flat punch with radius ã and with indentation depth dFP, recently given in compact form by Willert (2023).
The MDR is also applicable to linear viscoelastic media. Let us from now on consider an incompressible,

linear viscoelastic half-space with relaxation modulusE(t) = E0ψ(t), where ψ(t) is the normalized relaxation
function. If the radius of contact posesses a single maximum (and no minimum), Argatov and Popov (2016)
showed that the line load q(x, t) is given by the following integral in time over the elastic solution, which
becomes a function of time, since a = a(t):

q(x, t) =

∫ t1(t)

0

ψ(t− τ)
∂qe(x, τ)

∂τ
dτ, (5)

Stress tensor in the linear viscoelastic incompressible half-space (J.-E. Leroy)
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where t1(t) depends on the phase of the indentation. In the phase of monotonically increasing contact radius,
i.e. before reaching the maximum contact radius at time tmax, we have

t1(t) = t for t ≤ tmax, (6)

which lets equation (5) take the form according to the elastic-viscoelastic correspondance principle. In the
following phase of monotonically decreasing contact radius, t1(t) is the solution of the equation

a(t) = a(t1(t)), t1(t) < tmax for t > tmax. (7)

Alternatively to evaluating the integral in equation (5), which generally requires the knowledge of the entire
loading history, one can also solve equilibrium conditions for rheological elements representing a certain time-
dependent material behavior and forming the Winkler foundation to determine the line load q; for details on this
procedure see Popov et al. (2018, 2019). This is especially advantageous when solving problems numerically,
since not the entire loading history has to be stored, but, for instance using an Euler method, only the last time
step. Note that when determining the line load in this way, adhesion can also be easily taken into account using
a simple detachment criterion (Popov 2021).

3 Superposition rule
In analogy to the superposition method for the elastic problem we will show that to determine the full stress

state beneath the surface of an linear viscoelastic incompressible half-space the same principle applies, but
integrating along the line load q(x, t) and not along the profile g:

σAS
ij (r, z, a(t)) = −

∫ a(t)

0

σFP
ij (r, z, ã)

dFP
q′(ã, t)

E∗
0

dã. (8)

For this let us first insert equation (5) for q′(ã, t):

σAS
ij (r, z, a(t)) = −

∫ a(t)

0

σFP
ij (r, z, ã)

dFP
1

E∗
0

∫ t1(t)

0

ψ(t− τ)
∂2qe(ã, τ)

∂x∂τ
dτdã. (9)

The occurring derivative of qe reads:

∂2qe(x, t)

∂x∂t
= E∗

0 ȧ(t) [δ(a(t)− x) (−g′(a(t))− g′(x)) + δ′(a(t)− x) (g(x)− g(a(t)))] , (10)

where δ(a(t) − x) is the Dirac delta function and the dot is denoting a derivative in time. After inserting it in
(9), some shuffling in the equation and evaluating the integral in space, we get:

σAS
ij (r, z, a(t)) =

∫ t1(t)

0

ψ(t− τ)ȧ(τ)
σFP
ij (r, z, a(τ))

dFP
g′(a(τ))dτ. (11)

We now compare this result to the convolution-like equation over the elastic solution as a whole to calculate
the viscoelastic solution for an incompressible (and only for this case) medium, found at Graham (1965):

σAS
ij (r, z, a(t)) =

∫ t1(t)

0

ψ(t− τ)
∂σAS,e

ij (r, z, a(τ))

∂τ
dτ (12)

Inserting the elastic solution (4) and applying the Leibniz integral rule, we get:

σAS
ij (r, z, a(t)) =

∫ t1(t)

0

ψ(t− τ)

∂

[∫ a(τ)

0

σFP
ij (r, z, ã)

dFP
g′(ã)dã

]
∂τ

dτ (13)

=

∫ t1(t)

0

ψ(t− τ)ȧ(τ)
σFP
ij (r, z, a(τ))

dFP
g′(a(τ))dτ, (14)

which is the same equation as (11) and gives proof of the validity of the superposition rule in equation (8). On
the basis of Ting’s (1968) general solution, it can be shown in an analogous way that this superposition rule
must also be valid for arbitrary contact histories.
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Just as shown by Willert (2021a) for the elastic case, based on the stated superposition rule using flat punch
solutions (eq. (8)) a superposition procedure using Hertzian solutions for parabolic contact can be derived. We
will skip the derivation, which is exactly the same as in the aforementioned paper. The result is:

σAS
ij (r, z, a(t)) =

R

E∗
0

[∫ a(t)

0

σH
ij(r, z, ã)

(
q′′(ã, t)

2ã
− q′(ã, t)

2ã2

)
dã− σH

ij(r, z, a(t))
q′(a(t), t)

2a

]
, (15)

where σH
ij(r, z, ã) is the stress field generated by the indentation of the elastic half-space by a rigid parabolic

indenter with a shape defined by f(r) = r2/(2R), with a radius of contact ã; it is given in explicit form by
Huber (1904) or Hamilton (1983).

It is important to note that the described superposition principle is applicable to any linearly operated stress
components, e.g. the gradient of hydrostatic pressure phs = −(σrr + σφφ + σzz)/3 or its gradient. Using the
stress fields recently derived by Willert (2023) in the half-space beneath a circular flat punch, we can adapt the
superposition rule (4) to this specific case and get:

pAS
hs (r, z, a(t)) = − 1

π

∫ a(t)

0

1√
S
sin

(
π

4
− 1

2
atan

(
A

2zã

))
q′(ã, t)dã, (16)

dpAS
hs

dr
(r, z, a(t)) = − 1

π

∫ a(t)

0

r√
S3

sin

(
3π

4
− 3

2
atan

(
A

2zã

))
q′(ã, t)dã, (17)

dpAS
hs

dz
(r, z, a(t)) = − 1

π

∫ a(t)

0

√
z2 + ã2

S3
sin

(
π

4
+ atan

(z
ã

)
− 3

2
atan

(
A

2zã

))
q′(ã, t)dã, (18)

where A = r2 + z2 − ã2 and S =
√
A2 + 4ã2z2.

Equations (8) and (15)-(18) provide explicit solutions for three-dimensional stress components and their
derivatives (e.g. pressure gradient) based on the solution q(x, t) obtained in the framework of the MDR.

4 Numerical example
In order to illustrate the described procedure, we consider a rigid sphere of radius R and with mass m

impacting a viscoelastic half-space in the normal direction with the velocity v0, which is supposed to be small
compared to the characteristic velocity of wave propagation in the medium, so that we have a quasi-static
problem. The absolute value of the hydrostatic pressure gradient in the half-space is to be determined, i.e.

∣∣∣∇⃗phs∣∣∣ =
√(

dpAS
hs

dr

)2

+

(
dpAS

hs

dz

)2

. (19)

The viscoelastic half-space shall be a ”standard solid” with the normalized relaxation function

ψ(t) =

G∞ +G1 exp

(
−G1

η
t

)
G∞ +G1

, (20)

where G∞ + G1 is the instantaneous modulus, G∞ the static modulus and η the shear viscosity. The cor-
responding rheological model forms the elements of the Winkler foundation when solving the problem in
the context of the MDR (see figure 1). For this, firstly the line load q needs to be determined. This is easily
achieved by solving the equilibrium conditions of the rheological elements of the foundation. If we introduce
a dicretisation in the space coordinate xi = i∆x (denoted by subscript) and one in time tj = j∆t (denoted by
superscript) and apply the explicit Euler method, these equilibrium conditions read:

sji =
G1u

j
i +

η

∆t
sj−1
i

G1 +
η

∆t

, (21)

qji = 4
(
(G1 +G∞)uji −G1s

j
i

)
. (22)

The displacement u of the Winkler foundation is determined by the time-dependent indentation depth d and
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Figure 1. Displacements of the i-th rheologic element within the Winkler foundation.

the MDR-transformed profile of the sphere (in parabolic approximation) gi = x2i /R:

uji = dj − x2i
R
, (23)

whereby the contact area in the compression phase is determined by the condition ui > 0, in the restitution
phase by the condition qi > 0. The total force on the sphere can be determined by integration or, in the discrete
case, summation of the line load, so that the equation of motion reads:

md̈j = −
∑
i

qji∆x. (24)

With known line load q, equations (17) and (18) can now be evaluated. According to Willert (2020), the
impact problem depends only on the two dimensionless parameters

β =
G∞

G1
, δ = η

(
Rv0
m2G3

∞

)1/5

. (25)

Figures 3 to 5 show the absolute pressure gradient in the half-space at three different points in time along the
impact for the parameter combination β = 0.1 and δ = 0.3, while figure 2 shows the evolution of the contact
radius. For normalization the quantities of the fully elastic impact were used, i.e. the maximum contact radius
amax,e, the impact duration Te and the absolute pressure gradient in the center of the contact plane p′0:

amax,e =

(
15

64

mv20R
2

G∞

)1/5

, Te ≈ 1.647

(
m2

Rv0G2
∞

)1/5

, p′0 =
4G∞

R
. (26)
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Figure 2. Contact radius a(t) along the impact.
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Figure 3. (a) Normalized absolute value of the hydrostatic pressure gradient
∣∣∣∇⃗phs∣∣∣ /p′0 at time t/Te = 0.2.
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Figure 4. (b) Normalized absolute value of the hydrostatic pressure gradient
∣∣∣∇⃗phs∣∣∣ /p′0 at the time of

maximum contact radius t/Te ≈ 0.432.
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Figure 5. (c) Normalized absolute value of the hydrostatic pressure gradient
∣∣∣∇⃗phs∣∣∣ /p′0 at time t/Te = 0.6.

5 Conclusion
We presented two equations (8) and (15) to determine the stress state beneath the surface of a linear vis-

coelastic incompressible half-space in normal contact with an axisymmetric rigid indenter by superposition
of elastic flat punch or Hertzian solutions along the line load from the MDR formalism. The validity of the
flat punch superposition (from which the superposition of Hertzian solutions can be derived) was shown by
comparing it with the solution for the stresses in a viscoelastic half-space given by Graham (1965); an anal-
ogous proof can be given by comparison with Ting’s (1968) solution for the general case of arbitrary contact
histories. The authors see the great advantage of the presented superposition principle in the elimination of
(multiple) convolutions in the time domain (and with that the elimination of the need for knowledge about the
entire contact history) due to the fact that in the framework of the MDR the line load can be determined from
the equilibrium of rheological elements. This advantage arises especially in the numerical application of the
viscoelastic MDR and this method.
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