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 In this study, two-phase asymmetric peristaltic Carreau-Yasuda nanofluid flow 

in a vertical and tapered wavy channel is demonstrated and the mixed heat 

transfer analysis is considered for it. For the modeling, two-phase method is 

considered to be able to study the nanoparticles concentration as a separate 

phase. Also it is assumed that peristaltic waves travel along X-axis at a 

constant speed, c. Furthermore, constant temperatures and constant 

nanoparticle concentrations are considered for both, left and right walls. This 

study aims at an analytical solution of the problem by means of least square 

method (LSM) using the Maple 15.0 mathematical software. Numerical 

outcomes will be compared. Finally, the effects of most important parameters 

(Weissenberg number, Prandtl number, Brownian motion parameter, 

thermophoresis parameter, local temperature and nanoparticle Grashof 

numbers) on the velocities, temperature and nanoparticles concentration 

functions are presented. As an important outcome, on the left side of the 

channel, increasing the Grashof numbers leads to a reduction in velocity 

profiles, while on the right side, it is the other way around. 
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1. Introduction 

Peristaltic flow refers to a type of flow obtained due to the wavy or sinusoidal form of walls. Many 

applications in engineering and industrial phenomena, such as drug delivery, micro-channels, chemical plants, 

heat transfers, etc. include this sort of flow pattern, which Tripathi and Bég (2014) examined an application of 

this flow in bio-engineering through nanoparticles migration in a wavy artery. Hayat et al. (2016) used a 

perturbation technique to analyze a peristaltic Carreau-Yasuda nanofluid flow in a tapered asymmetric channel. 

Mosayebidorcheh and Hatami (Mosayebidorcheh and Hatami, 2018a, 2018b) used an efficient analytical 

method called least square method (LSM) for solving the peristaltic nanofluid flow between parallel and 

divergent walls of channels, separately.  

Khan et al. (2018) considered numerically the magnetic field effect on heat transfer and fluid flow treatment 

of a sinusoidal wall and asymmetric channel. In another study of the MHD effect on the nanoparticles, 
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treatment in a U-shaped cavity was performed by Hamzah et al. (2020). They found that in their application, 

platelet, cylindrical, brick and spherical shapes of nanoparticles had the maximum Nusselt numbers in 

sequence. Also, Hatami et al. (2020) investigated the effect of rotating cylinder turbulator in a wavy channel 

filled by nanofluid. They reported that increasing the Reynolds number had the maximum effect on heat 

transfer, which observed 4.8 and 1.6 average Nusselt numbers for the cylinder wall and wavy wall, respectively. 

Not only these studies, but also many other studies such as Dogonchi et al. (2019), Akinshilo et al. (2017, 

2020), Abdul Hakeem et al. (2020) focused on the nanofluids treatments in different areas as porous medium, 

between parallel and converging plates and over the plates, respectively. Ahmed et al. (2019) considered the 

fractional nanofluid between the vertical plates and analyzed it, mathematically, while Shukla et al. (2020) 

studied the entropy generation of the radiative bio-convection nanofluid under the oblique magnetic field.  

 Many researchers also focused on the Carreau nanofluid such as Hakeem et al. (2019), who studied 

the effect of exponentially variable viscosity and permeability of Carreau nanofluid flow. They categorized 

their results over an electromagnetic plate and in a porous medium. Furthermore, Abbasi et al. (2017) 

investigated the Carreau-Yasuda (C-Y) fluid in a curved channel including wavy walls and concluded that the 

radially varying magnetic field makes a reduction in velocity and an increment in the temperature values of the 

fluid. Khan et al. (2018) investigated the Carreau-Yasuda (C-Y) nanofluid chemical treatment in presence of 

magnetic field and found that skin friction coefficient decreased when Weissenberg number (We) is increased. 

Also, Tanveer et al. (2017) analyzed the peristaltic treatment of Carraeu-Yasuda nanofluid in a porous medium 

and curved channel and concluded that greater porosity in a medium makes an improvement in fluid velocity 

and reduction in nanoparticle concentrations. Furthermore, Abbasi et al. (2016) investigated the viscous 

dissipation, Joule heating and Hall effects on the peristaltic transport of MHD Carreau–Yasuda nanofluid 

through an asymmetric channel. 

Nanofluids, due to their wide applications in heat transfer phenomena, have motivated researchers to 

perform further studies and improvements. Kefayati et al. (2013) considered the water/alumina nanofluid and 

investigated the magnetic effect on its natural convection heat transfer. Mosayebidorcheh and Hatami (2017) 

also measured the natural convection heat transfer of carbon nanotube-water nanofluid between the rotating 

disks under thermal radiation conditions and examined the effect of important parameters on its treatments. 

They also modeled the two-phase (nanoparticle and base fluid) of condensation phenomena for nanofluids 

using the least square method (LSM) as an efficient analytical technique (Hatami, et al., 2017). Many other 

researchers used available analytical methods for analysis of nanofluids heat transfer due to simplicity and 

accuracy of these techniques. For instance, Mohyud-Din et al. (2010) used modified variational iteration 

method (MVIM), Mosayebidorcheh et al. (2017) used modified least square method (MLSM) for their 

modelling.  

With numerical or analytical solution of problems available, researchers tried to optimize the outcomes by 

various optimization techniques. Mosayebidorcheh et al. (2015) and Hatami et al. (20016) optimized the results 

of heat transfer in convective–radiative longitudinal fins and circular-wavy cavity, respectively. Hatami (2017) 

investigated the nanoparticles migration around the heated cylinder using the Response Surface Methodology 

(RSM) optimization technique and found the most suitable wavy-wall shape for this application. In addition, 

Hatami et al. (2018) considered the Fe3O4-water nanofluid heat transfer under the variable magnetic field and 

tried to optimize the results.  

In current study, a two phase problem of heat transfer and fluid flow of peristaltic nanofluids in a two 

dimensional asymmetric and tapered vertical channel by LSM is solved and analyzed. The efficiency of LSM 

as an analytical solution of current nonlinear governing equations is examined through comparing the results 

by numerical outcomes. This is the first time that this kind of the nanofluid flow (Carreau-Yasuda nanofluid) 

is analyzed using a weighted residual method and the investigation of mixed heat transfer from this channel is 

considered by a parametric study on velocity, temperature and nanoparticles concentration profiles.  

2. Problem description 

As depicted in Fig. 1, the peristaltic and incompressible Carreau-Yasuda nanofluid flow in a two 

dimensional asymmetric divergent and wavy channel is considered. It is assumed that the peristaltic waves 

travel along the X-axis with a constant speed, c, while the Y-axis is perpendicular to it. The upper and lower 

surface functions of wavy walls are given by (Mosayebidorcheh and Hatami, 2018a, 2018b): 
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where b1 and b2 are the wave amplitudes traveling along 1( , )H X t
 
and 2( , )H X t , respectively,  represents 

the phase difference between the upper and lower walls and varies between 0    , m(<<1) is the non-

uniform parameter for the tapered asymmetric channel and d shows the half-width of channel. The following 

relation is valid for these parameters:  
2 2 2
1 2 1 22 cos (2 )b b b b d d    (2) 

By introducing an extra stress tensor in pseudoplastic fluid as presented in (Mosayebidorcheh and Hatami, 

2018a, 2018b), the governing equations of total mass conservations, momentum and energy are given as:  
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where , , ,XX XY YX YYS S S S are the components of extra stress tensor, f and p represent the fluid and 

nanoparticles characteristics, respectively, and C  is the nanoparticles concentration, DB is the Brownian 

diffusion coefficient, DT denotes the themophoretic diffusion coefficient. Furthermore, expression of extra 

stress tensor for Carreau-Yasuda fluid is (Mosayebidorcheh and Hatami, 2018a): 

  1S A   (8) 

where the first Rivlin-Erickson tensor and apparent viscosity are, respectively:  
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and where a and  are the non-dimensional and material parameters, respectively, n is the non-dimensional 

power law index for Carreau-Yasuda fluid. The described fluid model defines the pseudo plastic flow with 

asymptotic viscosities at zero and infinite shear rates. This model also predicts the results of shear thickening, 

shear thinning and Newtonian fluids when n<1, n>1 and n = 1, respectively. Also, for a = 2 the model reduces 

to Carreau fluid model. In this study, the Yasuda parameter is taken as a = 1 to study the rheological aspects 

of non-Newtonian fluids. The following non-dimensional parameters can be defined:  
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where δ is the wave number, Re indicates the Reynolds number, Pr is the Prandtl number, Nt the 

thermophoresis parameter, Nb  the Brownian motion parameter, Sc denotes the Schmidt number and Gt and Gn 

are the local temperature and nanoparticle Grashof numbers, respectively.  

By introducing certain simplifications such as low Reynolds number and excluding the pressure term by 

extra stress components and using stream function, the governing equations result in the following final set of 

equations (Mosayebidorcheh and Hatami, 2018a, 2018b): 
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where xys can be defined based on the stream function: 
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The boundary conditions are given as: 
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where 
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3. Analytical solution 

As mentioned above, in this study a weighted residual method named Least Square Method (LSM) is used 

to resolve the Peristalsis Carreau-Yasuda nanofluid flow in the vertical and divergent channels. In this method, 

the residual is forced to reach zero when a trial function are applied on it as a polynomial equation of solution. 

In the first stage, the trial functions dependent variables are assumed so that the boundary conditions of the 

problem presented in Eq. (18) are satisfied: 
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where ic are the coefficients of trial functions which should be obtained using the LSM. The unknown 

parameters ic  are obtained by minimizing the residuals.  For example, for the case of 

1 21, 2, 0.6, 0.1, 0, 1.5, / 3, 0.4, 0.3t nG G Nb We b b            , the following solution is obtained:  
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Table 1 shows the LSM results and compares them to the numerical solution of problem for the case when 

1 21, 2, 0.6, 0.1, 0, 1.5, / 3, 0.4, 0.3t nG G Nb We b b            . It can be noticed that the approximate 

solution accuracy is acceptable, so LSM can be used for these types of problems to obtain accurate solutions. 

Table 1. Comparison of the LSM results with the numerical solution of problem. 

y  LSM 
 u y  

Error LSM 
 y  

Error 
Num Num 

-1.346 0 0 0 0 0 0 

-1.2 0.20574 0.20684 1.1E-3 0.14232 0.14423 2.0E-3 

-1.0 0.47207 0.47206 1.1E-05 0.30645 0.31187 5.4E-3 

-0.8 0.71208 0.70985 2.2E-3 0.44119 0.45083 9.6E-3 

-0.6 0.91554 0.91146 4.1E-3 0.55203 0.56604 1.4E-2 

-0.4 1.07222 1.06745 4.7E-3 0.64374 0.66155 1.8E-2 

-0.2 1.171892 1.16788 4.0E-3 0.72037 0.74072 2.0E-2 

0 1.20433 1.20236 1.9E-3 0.78526 0.80636 2.1E-2 

0.2 1.15930 1.16015 8.5E-4 0.84101 0.86078 2.0E-2 

0.4 1.02658 1.03021 3.6E-3 0.88953 0.90589 1.6E-2 

0.6 0.79594 0.80123 5.3E-3 0.93201 0.94329 1.1E-2 

0.8 0.45716 0.46171 4.5E-3 0.96892 0.97429 5.3E-3 

1 0 0 0 1 1 0 

4. Results and discussion 

After solving the governing equations presented in Eq. (14)-(16) with the boundary conditions given in Eq. 

(18) and by using the LSM method, Table 1 presents the results and demonstrates the accuracy of LSM 

compared to the numerical fourth-order Runge-Kutta method. Obviously, the order of magnitude of the error 

for u(y) is e-3 and for  y it is e-2, so the LSM method can predict both velocity and temperature profiles in 

acceptable range, whereby its accuracy for velocity is slightly better than the accuracy for the temperature 

profiles. Figs. 2 and 3 demonstrate the effect of local temperature and local nanoparticle Grashof numbers (Gt 

and Gn) on the axial velocity profiles, respectively. From both these figures, it can be seen that the velocity 

profiles have different or opposite trend on the left and right sides of the channel. On the left side of the channel, 

increasing the Grashof numbers leads to a reduction in the velocity, while on the right side (positive Y) the 

opposite trend is noticed.  

 

Figure 1.  Schematic of the asymmetric and vertical sinusoidal channel (Mosayebidorcheh and 

Hatami, 2018a) 
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Figure 2. Axial velocity profiles for different values of Gt when 

1 20.3, 0.4, 1, 2, / 3, 0.4, 0.3Nb We b b           

 
This trend is more pronounced for the nanoparticle Grashof number (Gn) depicted in Fig. 3.  

 

Figure 3. Axial velocity profiles for different Gn when 

1 21, 2, 0.6, 0.1, 0, 1.5, / 3, 0.4, 0.3t nG G Nb We b b             

Fig. 4 shows the effect of Brownian motion parameter on the temperature and nanoparticles concentration 

profiles, simultaneously. Increasing this parameter enhances both temperature and nanoparticles concentration 

due to the more intense nanoparticles movement from the walls toward the fluid.  
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Figure 4. Temperature and nanoparticle volume fraction profiles for different Nb when

1 20.5, 3, 0.4, 1, 2, 0, 0.4, 0.3t nG G We b b           

Effects of Prandtl number on the velocity and temperature profiles for 

1 20.5, 3, 0.3, 0.4, 1, 2, 0, 0.4, 0.3t nG G Nb We b b            are presented in Fig. 5. Increasing the Pr 

number has the same effect on the temperatures in the whole domain – it increases significantly the temperature 

values.  

 

 

Figure 5. Axial velocity and temperature profiles for different Pr when 

1 20.5, 3, 0.3, 0.4, 1, 2, 0, 0.4, 0.3t nG G Nb We b b            

Fig. 6 demonstrates the effect of viscosity ratio parameter on the velocity values. The trend of velocity 

profiles, like the Grashof numbers, discussed on Figs. 2-3, is different on the left and right sides of the channel. 

As Hayat et al. (2018a) mentioned, for larger β the velocity profile decreases near the left wall while opposite 

behavior is seen towards the right wall. 
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Figure 6. Axial velocity profiles for different  when 

1 20.5, 3, 0.3,Pr 0.7, 0, 1.5, 0, 0.4, 0.3t nG G Nb We b b           

Fig. 7 reveals the impact of dimensional volume flow rate in the wave frame (Θ) onto the velocity and 

confirms that increasing the flow rate leads to the increase of the maximum velocity in the channel and shifts 

its peak to the channel center.  

 

 

Figure 7. Axial velocity profiles for different   when

1 20.5, 3, 0.3,Pr 0.7, 0.7, 0, 0, 0.4, 0.3t nG G Nb We b b           

To show the effect of the discussed profiles (temperature, velocity and concentration) in different x sections 

(see Fig. 1), Fig. 8 is depicted for three x-values, namely for x=0, x=1 and x=2.  
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Figure 8. Axial velocity, temperature and nanoparticle volume fraction profiles for different x 

coordinate when 1 20.5, 3, 0.3,Pr 0.7, 0.7, 0, 1.5, 0, 0.4, 0.3t nG G Nb We b b             

It is clear that if the number of sections increases, it is possible to depict the contours along the x-y 

dimensions, as shown in Figs. 9-11 for velocity, streamlines and temperatures, respectively, and for different 

phase differences between the two wall sides. Fig. 9 confirms that increasing the phase difference leads to a 

wider cavity or vortex in the flow patterns. In addition, streamlines pattern as well as their values are more 

spread as seen in Fig. 10. Fig. 11 demonstrates that for lower values of φ larger temperatures occur in the 

channel center.  
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Figure 9. Velocity contour for different   when 

1 20.5 3, 0.3,Pr 0.7, 0.7, 1, 2, 0.8, 0.8t nG G Nb We b b           

 
 

 

 

 

Figure 10. Streamline profiles for different   when 

1 20.5 3, 0.3,Pr 0.7, 0.7, 1, 2, 0.8, 0.8t nG G Nb We b b           
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Figure 11. Temperature and nanoparticle volume fraction profiles when

1 20.5 3, 0.3,Pr 0.7, 0.7, 1, 2, 0.8, 0.8t nG G Nb We b b           

 

5. Conclusion  

In this study, solution of two phase-two dimensional modeling of asymmetric peristaltic flow and mixed 

heat transfer of Carreau-Yasuda nanofluids in a tapered wavy wall channel was obtained by means of the LSM 

analytical method. Stream function, temperature and nanoparticles concentration profiles were presented in 

diagrams and discussed. The outcomes are: 

 On the left side of the channel, increasing the Grashof numbers leads to a reduction in velocity 

profiles, while on the right side, the opposite trend is seen. 

 Increasing the Brownian motion parameter enhances both the temperature and the nanoparticles 

concentration due to the more intense nanoparticles movement from the walls toward the fluid.  

 Increasing the Prandtl number has the same effect on the temperatures in the entire domain seen 

in enhancement of the temperature values.  

 For larger viscosity ratio, the velocity profile decreases near the left wall while the opposite trend 

is noticed towards the right wall. 

 Increasing the phase difference makes a wider vortex in the flow pattern and streamlines are more 

spread.  
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