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 Material property viscoelastic inversion studies often rely on the 

continuous -time framework for Fourier analysis, which may not 

accurately represent real experimentally collected data. In this paper, 

we address the discrete and finite nature of viscoelastic functions 

obtained from experiments and discuss the impact of these 

characteristics on the frequency spectrum analysis. We derive 

equations for the Discrete-Time Fourier Transform (DTFT) of a 

discrete-finite stress relaxation signal corresponding to the relaxation 

of a generalized Maxwell model. Our analysis highlights the 

limitations of the traditional continuous -time framework in capturing 

the inherent features of real signals, which are discrete and finite in 

nature. This results in two phenomena: aliasing and spectral leakage. 

We present equations that consider these phenomena, allowing 

experimentalists to anticipate and account for aliasing and leakage 

when performing model fitting. The proposed discrete-finite approach 

provides a more accurate representation of real viscoelastic data, 

enabling researchers to make better-informed decisions in the analysis 

and interpretation of sample viscoelastic functions. 
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1. Introduction 

Viscoelastic materials exhibit both viscous and elastic properties and have been the subject of extensive 

research due to their widespread applications in various industries, such as automotive, aerospace, and 

biomedical engineering (Bruner & Dauskardt, 2014; Dittmer et al., 2000; Garcia et al., 2020; López-Guerra et 

al., 2019; Plodinec et al., 2012). The study of viscoelastic functions is essential to understand these materials' 

mechanical behavior, and accurate frequency spectrum analysis plays a crucial role in characterizing their 

response to stress and strain (Brinson & Brinson, 2008; Ferry, 1980). 

Traditionally, Fourier analysis in the field of viscoelasticity has been performed within the framework of 

continuous-time signals, which has been widely accepted and employed in numerous studies (Brinson & 

Brinson, 2008; Evans et al., 2009; Ferry, 1980; Findley et al., 1989; Geri et al., 2018; Holly et al., 1988; López-
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Guerra et al., 2017; M. McCraw et al., 2021; Tassieri et al., 2012; Tschoegl, 1989; Zhai & McKenna, 2014). 

However, real experimental data of viscoelastic functions are inherently discrete and finite, and the use of the 

continuous-time framework may not accurately represent these characteristics. This discrepancy can lead to 

the occurrence of two phenomena: aliasing and spectral leakage, which can significantly impact the accuracy 

and reliability of model fitting in viscoelastic studies. 

In fields such as electrical engineering and digital signal processing, the topics of aliasing and spectral 

leakage have been widely recognized and addressed (Lyons, 2011; McClellan et al., 2003; Oppenheim et al., 

1999; Oppenheim & Schafer, 1975; Smith, 1997). Despite their importance, these concepts have not 

sufficiently permeated other physical science fields, including linear viscoelasticity. This lack of integration 

has limited the development of robust methods for analyzing the frequency spectrum of discrete-finite 

viscoelastic functions. 

In the literature, there exist works investigating viscoelasticity in the Fourier context and discussing 

unexpected mismatches between the theory and experimental data due to signal properties and artifacts, such 

as aliasing (Aspden, 1991; Shtrauss, 2019; Shtrauss & Kalpins, 2012). In the last two years, we have made 

efforts to address the discrete nature of experimental data and bridge the gap between the continuous world of 

theory and the discrete world of experimentation. We have started our journey by exploring viscoelasticity in 

the Z -domain, which can be considered as a discrete counterpart to the Laplace domain commonly utilized in 

viscoelasticity theory derivations (Uluutku et al., 2021). We have analytically developed linear viscoelasticity 

models' constitutive equations in the Z-domain and compared the analytical results with experimental and 

simulated data. The advancements in the Z-domain have allowed us to effectively handle aperiodic and 

unbounded signals, which are frequently encountered in material indentation and stress-strain experiments. To 

streamline the newly developed methodology and establish consistency with the viscoelastic spectra and 

harmonic experiments, we have continued our work by focusing on certain contours of the Z -domain and 

carrying out the analysis on discrete modified Fourier domains (Lin et al., 2023; M. R. McCraw et al., 2022; 

Uluutku et al., 2022). The analytical equations derived in the Z-domain are evaluated at certain contours and 

reduced to variants of a single complex variable instead of a pair consisting of a real and an imaginary variable. 

To transition the signals into the chosen discrete modified Fourier domain, the signals are bounded via 

multiplication by a decaying exponential function, after which a discrete Fourier transform is executed. This 

method has proven to have several advantages, such as reducing the impact of spectral leakage and obtaining 

a modified version of the viscoelastic spectrum. This paper builds on our previous efforts and presents a unique 

approach by bringing the analysis back to the traditional Dicrete-Time Fourier transform (DTFT) and allowing 

the explicit observation of aliasing and spectral leakage within the theoretical framework.  

While the theory and methodology outlined in this work are widely applicable to numerous stress 

conditions, we primarily focus on stress relaxation and creep analysis. This focus is motivated by the increasing 

interest in soft inflatable structures for space exploration and colonization missions. The accurate 

characterization of creep behavior in these structures is vital to ensure their sustained performance under the 

rigorous conditions of outer space. This study thereby underlines the necessity to devise innovative methods 

and techniques that can efficiently capture and evaluate the unique properties of these soft inflatable structures 

in challenging space environments. (The US Small Business Administration, n.d.). Our study is divided into 

three main parts: discussing the traditional continuous-time framework, presenting the discrete-time theoretical 

framework, isolating the effect of aliasing, and analyzing the impact of sequence size on spectral leakage. With 

analytical equations, we show that both aliasing and leakage "pollute" all frequency bins, and by using the 

derived DTFT equations, experimentalists can anticipate these phenomena and consider them when performing 

model fitting. Finally, we offer concluding remarks and suggestions for future research. In addition, an 

Appendix is offered with a detailed step-by-step derivation of the main equations discussed in the main 

manuscript. 

2. Continuous-time theoretical framework 

Stress relaxation defines the stress behavior of a viscoelastic material under sustained strain. In contrast, 

creep characterizes the strain response when the material is exposed to steady stress. Stress relaxation, creep, 

and harmonic (sinusoidal) loading are frequently analyzed viscoelastic responses and are generally recognized 

as standard viscoelastic material functions (Brinson & Brinson, 2008; Ferry, 1980; Tschoegl, 1989). 

Furthermore, it is established that if one standard function can be accurately measured, it is theoretically 

possible to infer the other two through the correct application of viscoelastic interconversions (Park & 

Schapery, 1999; Schapery & Park, 1999; Tschoegl, 1989). Importantly, certain interconversions are based on 

the Fourier transform, thereby making it a central point of focus in this study. For example, starting from stress 

relaxation, if we can model our material as a generalized Maxwell model with K elements, our experimental 
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stress relaxation data should conform to the following equation (Brinson & Brinson, 2008; Findley et al., 1989; 

Forstenhäusler et al., 2021; Tschoegl, 1989):  

 

𝐺(𝑡) = ({𝐺𝑒} + ∑ 𝐺𝑘𝑒
−

𝑡
𝜏𝑘

𝐾

𝑘=1

)  𝑢(𝑡) 

(1) 

 

where 𝑘 = 1,2, . . . , 𝐾, 𝜏𝑘 is the kth relaxation time, K is the total number of relaxation times.  𝐺𝑘 is the 

relaxation modulus associated with the k-th relaxation time. 𝐺(𝑡) is the relaxation modulus, and the term within 

curly brackets, 𝐺𝑒, signifies the equilibrium modulus (also called rubbery modulus), which is predominantly 

responsible for the mechanical response at long timescales. Representing a purely elastic response, the rubbery 

modulus is commonly assumed to be zero for various materials. 𝑢(𝑡) is the unit step (Heaviside) function, 

emphasizing that the relaxation function is zero for negative times. 

The Fourier Transform, a fundamental tool in viscoelastic material interconversion, aids in extracting 

standard harmonic responses from gathered stress relaxation or creep data. The analysis of stress relaxation 

behavior can be efficiently conducted in the frequency domain, affording intuitive insights into its properties 

across various timescales and frequencies. Further, the frequency domain approach allows us to glean 

generalized information about the material's behavior from its relaxation characteristics. In this context, we 

highlight the Continuous-Time Fourier Transform (CTFT) to differentiate this theoretical formalism from the 

experimental discrete-time Fourier methods, set to be explored in ensuing sections. Thus, to represent stress 

relaxation in the frequency domain, we take the Fourier transform of the relaxation modulus, specifically 

employing the CTFT, which is defined as follows (Kreyszig, 1999; Smith, 1997): 

 
ℱ{𝑓(𝑡)}(ω) = ∫ 𝑓(𝑡)𝑒−𝑖ω𝑡𝑑𝑡

∞

−∞

 
(2) 

 

The CTFT allows us to connect time-domain viscoelastic responses (e.g., stress relaxation, creep) with 

standard frequency-domain viscoelastic functions (e.g., complex modulus, complex compliance). Applying the 

CTFT (Equation (2)) to the stress relaxation expression for the Maxwell model (Equation (1)), we obtain the 

following Equation that connects the CTFT of the relaxation modulus with the Maxwell model parameters: 

 
ℱ{𝐺(𝑡)} = {𝐺𝑒} (

1

𝑖ω
+ 𝜋𝛿(ω)) + ∑

𝐺𝑘τ𝑘

1 + 𝑖ωτ𝑘

𝐾

𝑘=1

 
(3) 

 

The first term corresponds to the Fourier transform of the unit step function. This is not classically defined 

due to the function's non-absolute integrability. However, it can be symbolically represented by a 1/𝑖𝜔 term 

for the continuous spectrum and a Dirac delta function 𝛿(𝜔) term for the discontinuity at zero frequency, 

indicating the unit step function's abrupt change at the origin (Oppenheim et al., 1999).  

If we multiply Equation (3) by 𝑖ω we obtain: 

 

(𝑖ω) ∙ ℱ{𝐺(𝑡)} = {𝐺𝑒}(1 + 𝑖𝜔𝜋𝛿(ω)) + ∑
𝐺𝑘τ𝑘𝑖𝜔

1 + 𝑖ωτ𝑘

𝐾

𝑘=1

 

(4) 

 

When the Fourier transform is multiplied by 𝑖𝜔, the term 𝑖𝜔𝜋𝛿(ω) arises. However, due to the unique 

nature of the delta function, which is only defined at 𝜔 = 0, the term 𝑖𝜔𝜋𝛿(𝜔) essentially disappears at 𝜔 =
0, since the omega factor serves as a zero multiplier. This term, while theoretically present, does not materially 

affect practical engineering applications and thus can be rightfully set aside: 

 

(𝑖ω) ∙ ℱ{𝐺(𝑡)} = {𝐺𝑒} + ∑
𝐺𝑘τ𝑘𝑖𝜔

1 + 𝑖ωτ𝑘

𝐾

𝑘=1

 

(5) 

 

From this last equation, it is recognized that the right-hand-side is the complex modulus, 𝐺∗(𝜔), of a 

Generalized Maxwell model with an arbitrary number of K elements [6, 8]. The complex modulus, 𝐺∗(𝜔), 

represents the harmonic stress response in the steady state for a material subjected to harmonic strain excitation.  

Thus, Equation (5) can also be expressed as: 

 (𝑖ω) ∙ ℱ{𝐺(𝑡)} = 𝐺∗(𝜔) (6) 

This is a well-known expression connecting the CTFT of the relaxation modulus (ℱ{𝐺(𝑡)}) with the 

complex modulus (𝐺∗(𝜔)) (Findley et al., 1989; Tschoegl, 1989). The complex modulus (𝐺∗(𝜔)) offers a 

convenient pathway to ascertain the complex compliance, defined as its inverse: 

 𝐽∗(ω) = 1/𝐺∗(𝜔) (7) 
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This complex compliance embodies the frequency-domain analog of the creep behavior—a material's time-

dependent strain under sustained stress. Thus, while creep measures how a material strain evolves with time 

under a constant stress in the time-domain, the complex compliance describes the material's response under a 

sinusoidal (or harmonic) stress variation in the frequency domain. Therefore, 𝐽∗(ω) serves as an insightful 

metric to characterize a material's frequency-dependent viscoelastic behavior during creep. 

3. Discrete-time theoretical framework 

The significance of discrete-time data in viscoelasticity studies is paramount, largely due to the inherent 

nature of data collection through modern digital instrumentation, which naturally produces discrete series of 

data (Uluutku, 2022). In viscoelastic characterization, constant deformation or load application is a common 

practice for stress relaxation and creep assessment, respectively. In an experimental setting that involves the 

application of constant strain deformation, our discrete-time relaxation data (represented as 𝑥[𝑛]) assumes the 

form: 

 

𝑥[𝑛] = 𝑢[𝑛] ⋅ (∑ 𝐺𝑘𝑒−𝑡[𝑛]/𝜏𝑘

𝐾

𝑘=1

+ {𝐺𝑒}) ,  𝑛 = 1,2, . . . , ∞ 

(8) 

where, as before, 𝑘 = 1,2, . . . , 𝐾, 𝜏𝑘 is the kth relaxation time, K is the total number of relaxation times, 𝐺𝑒 

is rubbery modulus, 𝐺𝑘 is the relaxation modulus associated with the k-th relaxation time, Δ𝑡 is the 

experimental timestep whose inverse is known as the sampling frequency, and 𝑢[𝑛] is the (Heaviside) unit step 

function. Having a unit step function in the expression indicates that before the experiment, before time zero, 

the material is in resting conditions with no priori deformation or stress. Equation (8) serves as the discrete-

time equivalent of Equation (1), marking our transition from continuous to discrete notation. It is important to 

underline that 𝑥[𝑛], the discrete relaxation data, is a sequence that relies on the index 'n,' rather than on a 

continuous -time variable. Observations occur at distinct time points, represented as the discrete series 𝑡[𝑛]. In 

cases where the sampling time is constant, we can replace the series containing time with 𝑡[𝑛]  =  𝑛∆𝑡, where 

∆𝑡 is the constant sampling time. This simplifies the notation without loss of information. Hence the relaxation 

behavior can be described by: 

 

𝑥[𝑛] = 𝑢[𝑛] ⋅ (∑ 𝐺𝑘𝑒−𝑛Δ𝑡/𝜏𝑘

𝐾

𝑘=1

+ {𝐺𝑒}) ,  𝑛 = 1,2, . . . , ∞ 

 

(9) 

Making the substitution: 𝑎𝑘 = 𝑒−Δ𝑡/𝜏𝑘, the summation term would become: ∑ 𝐺𝑘𝑎𝑘
𝑛𝐾

𝑘=1 . This substitution 

may become handy for further simplifications (see Appendix).  

Although these viscoelastic functions are generally regarded as bandwidth unlimited, it is illustrative to 

notice that their low-frequency and large-frequency responses are dominated by the inverse of the largest (1/𝜏𝐾) 

and lowest relaxation time (1/𝜏1), respectively. Illustration of Equation (9)  with different sampling frequencies, 

1/Δ𝑡, can be seen in Figure 1. 

In the continuous-time framework covered in the previous section, we used the CTFT on the time-domain 

relaxation modulus (Equation (2) applied to Equation (1)), yielding a frequency-domain relationship related to 

the complex modulus. In contrast, in the discrete-time scenario, we apply its analog, the DTFT, to our sequence. 

The DTFT employs a discrete infinite summation on the sequence elements, resulting in a transformed function 

in the continuous frequency variable Ω: 

 
𝑋(𝑒𝑖Ω) = ∑ 𝑥[𝑛]𝑒−𝑗Ω𝑛

∞

𝑛=−∞

 
(10) 

where the frequency Ω ranges from zero to 2π. This unit circle agle unit, Ω, corresponds to a range from − (
1

2Δ𝑡
) 

to (
1

2Δ𝑡
). Although the signal is discrete in time, we obtain a continuous expression in frequency as a result of 

the DTFT. When we have a time-limited signal, we cannot apply the DTFT, except for a handful of scenarios 

where the data is well-windowed and bounded between trailing zero values.  For time-limited series, we can 

only apply the discrete Fourier transform (DFT), which inherently assumes the sequence to be periodic. This 

may also introduce some artifacts for unbounded signals; however, it is very practical and utilized in every 

aspect of engineering and applied sciences. The analytical equations derived for the DTFT also hold for the 

DFT. One can visualize the DFT as a sampled version of the DTFT where we pick equally spaced data points 

in the amount of sequence length on Ω. Therefore, in contrast to the DTFT, the resulting frequency signal is 

also discrete, just like the time signal. It is very easy to confuse the DFT, DTFT, and other Fourier family 

transformations due to their similar names, and more information can be found in references (Smith, 1997; 

Uluutku et al., 2021). Although one can calculate the DFT by other means and from formal definitions, it is 
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much more convenient and efficient to utilize well-established algorithms such as the Fast Fourier Transform 

(FFT) (Cooley & Tukey, 1965).  

 

 
Figure 1. Graphical representations of the discrete-time relaxation modulus described in Equation (9) 

for three different sampling frequencies shown in the figure legends. Note that the x-scales are different but 

covering the same region of the exponential decay. The upper plot shows very few non-zero samples 

available when the sampling frequency is chosen as (1/𝜏1) whereas, in the extreme case, the lower plot shows 

a sampling frequency of 100/𝜏1. The middle plot is a middle ground with a sampling frequency of 10/𝜏1. In 

the following section, we will delve into the impact of choosing different sampling frequencies on the 

frequency analysis of signals. 

 

Applying the DTFT operation to the discrete relaxation modulus defined in Equation (9), we can obtain the 

relaxation modulus in the frequency domain as follows (A detailed derivation can be found in the Appendix):  

 

𝑋(𝑒𝑖Ω) = Δ𝑡
{𝐺𝑒}

1 − 𝑒−𝑖Ω
+ Δ𝑡{𝐺𝑒} ∑ 𝜋𝛿(Ω − 2𝜋r)

∞

𝑟=−∞

+ Δ𝑡 ∑
𝐺𝑘

1 − 𝑒−Δ𝑡/𝜏𝑘𝑒−𝑖Ω

𝐾

𝑘=1

 

(11) 

As Δ𝑡 approaches zero, we approach a continuous signal, and the Equation starts to converge to the 

continuous formalism. For small values of the sampling time, Δ𝑡, (in other words, for high sampling 

frequencies), we can simplify Equation (11) utilizing a Taylor expansion. By doing so and neglecting higher 

order terms in Δ𝑡 as for the cases where it is small (see Appendix for details on the simplification), we obtain: 
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𝑋(𝑖ω) ~ {𝐺𝑒} (
1

𝑖ω
+ Δ𝑡 ∑ πδ(Ω − 2π𝑟)

∞

𝑟=−∞

) + ∑
𝐺𝑘𝜏𝑘

1 + 𝑖ω𝜏𝑘 − 𝑖ωΔ𝑡

𝐾

𝑘=1

 

 

(12) 

 

Now when we compare the frequency-domain equations between the continuous-time case (Equation (3)) 

and the discrete-time case (Equation (12)), we observe that they have the same shape but differ by an additional 

term (−𝑖ωΔ𝑡) in the denominator. It is insightful to note that this term diverges the discrete formulation from 

the continuous formulation. Therefore, not considering this term and using a continuous formulation with 

discrete data causes inaccuracies.  

3. Effects of Upper-bandwidth limit (Aliasing) 

The DTFT frequency axis spans from minus to plus the Nyquist rate, which is one over half the sampling 

period or the half sampling frequency. The selection of an appropriate sampling frequency directly affects the 

accurate representation of the signal and underlying physics. Selection of the upper bandwidth limit is essential 

as one would like to sample at a rate that is at least twice the highest frequency present in a signal to satisfy 

Nyquist-Shannon sampling theorem and to be able to reconstruct the continuous signal from the sampled one. 

If this criterion is not satisfied, the signal cannot be represented accurately. Now, clearly The relaxation 

equation contains every frequency (Equation (3)). Therefore, it is technically impossible to select a sampling 

frequency at least twice the higher frequency. However, the frequency components do become negligible 

beyond a certain point, and we can always choose a "practical highest frequency." To demonstrate this, we 

choose three different sampling frequencies that are scaled to the relaxation time, 1/𝜏1. The selection of these 

three sampling rates is illustrated in Figure 2. To visualize the meaning of this illustration, one can consider 

that each sampling frequency in the plotted spectrum only allows accurate representation of the portion of the 

signal up to its respective vertical line. The portion of the signal that is not contained to the left of the respective 

line will be "folded back," aliased, and will pollute the spectrum. For example, we can expect serious aliasing 

and inaccuracies with 1/𝜏1 sampling frequency. Meanwhile, little and minimal aliasing would be observed 

with 10/𝜏1 and 100/𝜏1, respectively. Therefore, the sampling rate must be at least twice higher than the 

bandwidth of the signal; this determines the upper bandwidth limit. 

 
Figure 2. Continuous-time Fourier Transformed representation of the relaxation modulus for three 

choices of upper bandwidth limit, given by the three vertical dashed lines: a) 1/𝜏1, b) 10/𝜏1, c) 100/𝜏1. For 

100/𝜏1 it can be seen that the frequency components (magnitude of the signal) are negligible. The effects 

of the sampling frequency in the time domain are illustrated in Figure 1 and the effects on the transformed 

data in the frequency domain are illustrated in Figure 3. 

 

In the discrete formulation of the generalized Maxwell model, Equation (12), where we need to include a 

sampling frequency, we can see this aliasing effect prominently. Changing the sampling rate, especially making 

it significantly smaller, disturbs the data and makes the resulting transform diverge from the continuous case 

significantly. This phenomenon, known as aliasing, is encapsulated in the (−𝑖ωΔ𝑡) term of Equation (12) and 

its effect is illustrated in Figure 3. When computing the DFT of stress relaxations for different sampling rates, 

as illustrated in Figure 3, the signal with a 1/𝜏1 sampling rate noticeably deviates from the continuous 

formulation (Equation (3)). Consequently, data affected in this manner must be processed within the context 
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of a discrete-time framework. Upon closer observation, it is apparent that the DFT of the data harmonizes 

precisely with the stress relaxation calculated analytically using the discrete formulation (Equation (12)).  

 

 
Figure 3. Comparative DTFT analysis for the three different selections of sampling frequency shown in 

Figure 1 and Figure 2. The green trace represents |𝑋1(𝜔)|, and underscores an extreme case of significant 

frequency aliasing due to a sampling frequency of 1/𝜏1 Hz, causing a notable departure from the continuous-

time CTFT, represented by the black continuous line. |𝑋2(𝜔)|   𝑎𝑛𝑑 |𝑋3(𝜔)| have higher sampling 

frequencies (10/𝜏1 and 100/𝜏1 𝐻𝑧, respectively) and therefore follow more closely the theoretical CTFT 

line, as frequency aliasing is less prominent in these two cases. Regardless of whether aliasing is expected, 

data subject to such effects must be analyzed within a discrete-time framework. On careful examination, the 

DFT of the data aligns precisely with the analytically computed stress relaxation using the discrete 

formulation (Equation (12)). Recall that the DFT, a sampled version of the DTFT, can be practically 

implemented through various software packages, and in this case, was computed using the popular FFT 

algorithm (Cooley & Tukey, 1965) via the Python scipy package (Virtanen et al., 2020). 

4. Effects of Signal Length (Spectral Leakage) 

So far, we have examined the implications of using a discrete-time signal instead of a continuous function, 

as well as the consequences of the selected sampling frequencies and related aliasing effects. Until now, we 

have also assumed the signals to be infinitely long for the purpose of discussion. However, actual experimental 

data consists of finite sets. In this section, we shift our focus to the effects of signal length and, consequently, 

the duration of the experiment. Now we consider a similar relaxation modulus sequence like that of Equation 

(9), but this time we will assume that the sequence is finite with an "M" number of elements.  

 

𝑦[𝑛] = (𝑢[𝑛]) ⋅ (∑ 𝐺𝑘𝑒−𝑛Δ𝑡/𝜏𝑘

𝐾

𝑘=1

+ {𝐺𝑒}) ,  𝑛 = 1,2, . . . , 𝑀 

(13) 

After the time point M, we do not have any information about the behavior of the signal; however, if we 

multiply this function with a rectangular pulse with the width of M that would span the known part of the 

signal, we can window the known parts of the signal. The unknown parts of the signal would be multiplied by 

zero; hence we can write the new expression as: 

 

𝑦[𝑛] = (𝑢[𝑛] − 𝑢[𝑀]) ⋅ (∑ 𝐺𝑘𝑒−𝑛Δ𝑡/𝜏𝑘

𝐾

𝑘=1

+ {𝐺𝑒}) ,  𝑛 = 1,2, . . . , ∞ 

(14) 

The above equation is illustrated in Figure 4 with three different signal lengths. 
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Figure 4. Time-domain representation of discrete-time stress relaxation data with three different 

experimental lengths conforming to Equation (14). The aim is to explore the influence of these sequences' 

lengths on their Fourier spectra when the DTFT is applied. A detailed examination of the consequences of 

this truncation can be found in Figure 5. 

 

Since by windowing, we have obtained an infinite length function; we can apply the DTFT and find the 

stress relaxation in the frequency domain.  Although we are still using the generalized Maxwell model, the 

presence of the rectangular window function alters the Fourier response. First, the windowing operation of the 

unknown parts of the signal corresponds to zero padding. As mentioned above, when DFT is applied to a finite 

signal, the resulting signal in the frequency domain is also finite. However, by zero-padding the signal to 

infinity, we are making the frequency continuous. Essentially, by zero padding, we are interpolating the 

frequency response artificially, which does not alter the frequency data points of the DFT. However, it causes 

interpolated parts of the signal to have artificial oscillations. Second, not having the full signal, to begin with, 

causes a loss of information and causes spectral leakage. The DTFT of the windowed signal is expressed as 

follows. A detailed derivation can be found in the Appendix. 

 

𝑌(𝑒𝑗Ω) = Δ𝑡 {
𝐺𝑒(1 − 𝑒−𝑖𝑀Ω)

1 − 𝑒−𝑖Ω
} + Δ𝑡 ∑

𝐺𝑘(1 − 𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑖𝑀𝛺)

1 − 𝑒−Δ𝑡/𝜏𝑘𝑒−𝑖Ω

𝐾

𝑘=1

 

(15) 

 

Equation (15) represents the DFT of the discrete-time, finite M-size stress relaxation sequence for a 

generalized Maxwell model, encompassing an arbitrary K number of relaxation times as given in Equation (7). 

This equation incorporates the contribution of the rubbery modulus Ge, making it a more comprehensive 

theoretical framework. Now, we perform Taylor series expansions as in previous section and higher order terms 

in Δ𝑡 as for the cases where it is small (see Appendix for details on the simplification) we obtain: 

 

𝑌(𝑖ω) ~ {
𝐺𝑒(1 − 𝑒−𝑖ωΔ𝑡𝑀)

𝑖ω
} +  ∑

𝐺𝑘𝜏𝑘(1 − 𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑖𝑀ωΔ𝑡)

1 + 𝑖ω𝜏𝑘 − 𝑖ωΔ𝑡

𝐾

𝑘=1

 

(16) 

 

Note that in the numerator, we cannot neglect higher order terms on 𝑀Δ𝑡 in the Taylor series expansion. 

Whereas Δ𝑡 tends to be small for higher sampling frequencies, M also may tend to be large as more data points 
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of the experimental relaxation sequence are available. It is evident that as M increases, the term 

𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑖𝑀ωΔ𝑡  diminishes, thereby mitigating the effect of spectral leakage. 

The impacts of aliasing and spectral leakage, resulting from the finite and discrete nature of the data 

sequences, are encapsulated in Equation (16). As Figure 5 graphically illustrates, these impacts are sensitive to 

sequence size, influencing the Fourier spectrum. For shorter signals, an oscillatory behavior emerges due to 

spectrum interpolation via zero-padding. This not only 'fills the frequency gaps,' but also significantly alters 

the overall magnitude and distribution of the signal. 

As the known section of the sequence expands and the data becomes more and more bounded, the Discrete 

Time Fourier Transform (DTFT) gradually converges to the Continuous -Time Fourier Transform (CTFT). 

This occurs when the exponentially decaying terms in the relaxation function have substantially decayed before 

data capture is halted. This suggests that choosing a sufficiently large M value can effectively mitigate the 

spectral leakage effect. 

However, in practice, constraints such as experiment duration and data storage often preclude the 

acquisition of long sequences. This reality underscores the value of the mathematical framework proposed in 

Equation (15), which takes into account the effects of aliasing and leakage. By doing so, this framework 

provides a more accurate and pragmatic theoretical tool for analyzing real-world, finite, discrete-time 

viscoelastic signals. 

 

 
Figure 5. Effect of the length of the sequence, M, (spectral leakage effect) on the Fourier spectra of the 

three sequences with different M shown in Figure 4. The value of M is 100, 200, and 1000 for 

𝑌1(𝜔), 𝑌2(𝜔), 𝑌3(𝜔), respectively. The continuous (yellow) line shows the theoretical Fourier spectrum of 

the relaxation modulus for the continuous-time function. It can be clearly seen that the shorter the sequence, 

the higher the “ripple” effect and the further the trace deviates from the theoretical value. This “ripple” effect 

is clearly originating from the term 𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑖𝑀ωΔ𝑡 in Equation (12). It can be easily seen that as M goes 

to infinity, the real part (amplitude) of this term goes to zero and the effect of spectral leakage vanishes. This 

underlines the fact that data subject to such effects must be analyzed within a discrete-time framework that 

accounts for finite-sequences. In other words, if we have finite and discrete stress relaxation data as that 

collected in a real -life experiment, we should use Equations (15) and (16) instead of the classical time-

continuous formulations (Equation (3)). 

 

As a summarizing note, Figure 6 provides a comparative overview of Fourier analysis applied to 

viscoelastic stress relaxation signals under different scenarios: an infinitely long discrete-time sequence, a 

discrete and finite sequence (as observed in real-life cases), and the continuous-time case for reference. For 

ease of understanding, we have highlighted the terms that deviate from the traditional continuous-time 

theoretical formulation. 
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Figure 6. Comparison of mathematical formulations in Fourier analysis applied to viscoelastic stress 

relaxation signals for the following three specific cases: an infinite discrete-time sequence (left-hand-side), 

a finite discrete sequence indicative of real-world scenarios (center), and the continuous-time classical 

formulation (right-hand-side). After applying certain approximations (refer to Appendix A), the discrete-

time cases (Equation (12)) demonstrate similarity to the continuous-time case (Equation (3) on right-hand-

side). However, the discrete-time cases have an additional term (𝑖ωΔ𝑡) in the denominator, which is 

associated with the aliasing effect. Further, the finite discrete-time case (Equation (16) in the central image) 

introduces another term in the numerator (1 − 𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑖𝑀ωΔ𝑡), considered to be the origin of spectral 

leakage due to the truncation of the M-sized length sequence. While our derived equations in the main text 

encompass the rubbery modulus term, this figure deliberately omits it for the sake of clarity, allowing for a 

more focused comparison with the continuous-time case. Nonetheless, the inclusion of the rubbery modulus 

term may be pertinent in some cases based on the specifics of the analysis. 

5. Practical Illustration of the Discrete-Finite Approach in Extracting Viscoelastic Properties 

We now turn our attention to Figure 7, which underscores the importance of our discrete and finite approach 

to experimental time-domain stress relaxation data analysis. Figure 7A illustrates a simulated time-domain 

stress relaxation signal. This simulation employs generalized Maxwell parameter data for polyisobutylene from 

Brinson, Catsiff, and Tobolsky (Brinson & Brinson, 2008; Catsiff & Tobolsky, 1955), a sampling frequency 

of 44.45 MHz, a total sampling time of 92 µs, and incorporates Gaussian noise. The code utilized for this 

simulation and data analysis is fully accessible in (Lopez-Guerra, 2023/2023). This form of discrete and finite 

digital data, featuring noise, mirrors the typical output obtained from modern high-frequency digital equipment 

used in actual rheological experiments. 

In Figure 7B, the Fourier transform analysis of the time-domain data from Figure 7A is displayed. Here, 

we show four traces: the Discrete-Time Fourier Transform (DTFT) calculated with Equation (15), the 

numerical Fast Fourier Transform (FFT) represented by blue asterisks, the Continuous-Time Fourier Transform 

(CTFT) based on the conventional continuous-time case (Equation (3)), and a nonlinear least square fit using 

Equation (15) as the fitting model. By also applying nonlinear least square (NLLS) fitting with Equation (3) as 

the fitting model, we emphasize the risks associated with traditional theoretical formalisms. Both nonlinear 

optimizations were performed using the open source lmfit python package (Newville et al., 2016). 

Figure 7C offers a comparison of actual (theoretical) material properties and those estimated when using 

different theoretical frameworks. The theoretical complex modulus, calculated with Brinson, Catsiff, and 

Tobolsky's Maxwell parameter data for poly isobutylene (Brinson & Brinson, 2008; Catsiff & Tobolsky, 1955), 

is contrasted with the complex modulus extracted through our discrete-finite framework (Equation (15)) and 

the continuous-time framework (Equation (3)). The comparisons presented clearly underscore the improved 

accuracy offered by our discrete and finite theoretical approach, underscoring its necessity for the precise 

interpretation of viscoelastic data. It is important to point out that the Fourier analysis is tailored to the specific 

region of interest, which corresponds to the experimental timescale. That is, the frequency region spans from 

1/T to 1/νf, where T and νf denote the total experimental time and the sampling frequency, respectively. Note 

that in Figure 7C, the complex modulus for all traces is calculated using Equation (5). For the theoretical case 

(orange trace), we use Maxwell parameters from Brinson, Catsiff, and Tobolsky, as previously mentioned 

(Brinson & Brinson, 2008; Catsiff & Tobolsky, 1955). For the discrete-finite case (blue trace) and the 
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continuous-time framework (green trace), we apply the parameters fitted from the NLLS optimization using 

Equation (15) and Equation (3), respectively. 

 

 
Figure 7. Importance of considering the discrete and finite nature of experimental time-domain stress 

relaxation data. Figure 7A shows a simulated time-domain stress relaxation signal generated from Maxwell 

parameter data for polyisobutylene (Brinson & Brinson, 2008; Catsiff & Tobolsky, 1955) with a 44.45 MHz 

sampling frequency over 92 µs and Gaussian noise inclusion. The simulation code is detailed in (Lopez-

Guerra, 2023/2023). Figure 7B depicts the Fourier analysis of Figure 7A data, highlighting four traces: the 

DTFT (Equation (15), thick blue line); the numerical FFT (blue asterisks); the CTFT (continuous case 

formalism, Equation (3), continuous green line); and a nonlinear least square fit (red dashed line), 

demonstrating the risks of using the conventional continuous-time theory. Figure 7C contrasts the theoretical 

complex modulus (using Maxwell parameters for polyisobutylene, (Brinson & Brinson, 2008; Catsiff & 

Tobolsky, 1955)) with those estimated using Equation (15) versus Equation (3). The differences underscore 

the superior accuracy of the discrete-finite approach (Equation (15), blue continuous line) over the 

continuous-time formalism (Equation (3)). 
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As shown, the complex modulus derived from the Nonlinear Least Squares (NLLS) fitting, with Equation 

(15) as the objective model, closely mirrors the theoretical complex modulus over most of the frequency range. 

The fitting is somewhat less precise in the upper range, likely due to the relatively fewer data points at shorter 

timescales when analyzed on a logarithmic scale. Despite this, the discrete-finite approach is markedly more 

reliable than the conventional continuous-time analysis (Equation (3)), which fails to accurately track the 

theoretical complex modulus throughout the entirety of the analysis range. 

5. Conclusion 

In this study, we have demonstrated the significance of considering the discrete and finite nature of real 

experimentally collected viscoelastic functions when analyzing their frequency spectrum. By deriving 

equations for the DTFT of a discrete-finite stress relaxation signal following the relaxation of a generalized 

Maxwell model, we have highlighted the limitations of the traditional continuous-time framework. Our 

approach successfully addressed the phenomena of aliasing and spectral leakage, which were found to be 

crucial factors affecting the accuracy and reliability of model fitting in previous viscoelasticity studies. 

The discrete-finite approach presented in this paper offers a more accurate representation of real viscoelastic 

data, allowing researchers to better understand and interpret viscoelastic functions. Our findings can contribute 

to the development of more robust methods for studying viscoelastic materials and provide guidance for 

experimentalists in optimizing their data analysis techniques. As a future direction, we envision extending the 

application of our approach to additional viscoelastic models and exploring its relevance within other types of 

viscoelastic responses such as those observed during the application of a linear time-dependent force, a topic 

of significant interest in modern characterization techniques like force-distance curve spectroscopy in atomic 

force microscopy, among others. 
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Appendix 1: Derivation of DTFT for an infinite sequence 

We start by providing a step-by-step derivation of the DTFT of Equation (8) in the main manuscript. 

Equation (8) is the generalized Maxwell stress relaxation sequence where we assume that we have infinite 

information on the long timescale.  

 

𝑥[𝑛] = 𝑢[𝑛] ⋅ (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

+ {𝐺𝑒}) ,  𝑛 = 1,2, . . . , ∞ 

 

(A1) 

where 𝑎𝑘 = 𝑒−Δ𝑡/𝜏𝑘 ,  𝑘 = 1,2, . . . , 𝐾.   

Now, we proceed to perform the DTFT (Equation (10))  𝑋(𝑒𝑖Ω) = ∑ 𝑥[𝑛]𝑒−𝑗Ω𝑛∞
𝑛=−∞  to our previous 

equation: 
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Since 𝑥[𝑛]  =  0 for 𝑛 <  0 (due to the unit step function 𝑢[𝑛]), we can rewrite the summation for 𝑛 ≥  0 

as follows: 

 

𝑋(𝑒𝑖Ω) = ∑ (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

)

∞

𝑛=0

⋅ 𝑒−𝑖Ω𝑛 

 

(A2) 

Observe that we have disregarded for now the rubbery modulus {𝐺𝑒} term for tidiness in the derivation, but 

its DTFT will be added in the end thanks to the linearity of the DTFT, which allows us to treat it separately. 

Now, let us exchange the order of the summations: 

 

𝑋(𝑒𝑖Ω) = ∑ (𝐺𝑘 ∑(𝑎𝑘
𝑛 ⋅ 𝑒−𝑖Ω𝑛)

∞

𝑛=0

)

𝐾

𝑘=1

 

 

(A3) 

We can rewrite the inner summation as a geometric series (Kreyszig, 1999): 

 

𝑋(𝑒𝑖Ω) = ∑ 𝐺𝑘 ∑(𝑎𝑘𝑒−𝑖Ω)𝑛

∞

𝑛=0

𝐾

𝑘=1

 

 

(A4) 

To find the sum of the geometric series, we use the formula 𝑆 =  𝑎 / (1 −  𝑟), where 𝑎 is the first term 

and 𝑟 is the common ratio. In this case, 𝑎 =  1 (when 𝑛 =  0) and 𝑟 = 𝑎𝑘𝑒−iΩ. So, the sum of the geometric 

series is: 

𝑆𝑘 =
1

1 − 𝑎𝑘𝑒−𝑖Ω
 

Now, we sum over all values of 𝑘 (from 𝑘 =  1 to 𝑘 =  𝐾): 

 

𝑋(𝑒𝑖Ω) = ∑ 𝐺𝑘

1

1 − 𝑎𝑘𝑒−𝑖Ω

𝐾

𝑘=1

 

 

(A5) 

We then add the contribution from the rubbery modulus term {𝐺𝑒} which is a constant multiplied by the 

unit step function in Equation (A1). The DTFT of the unit step function is 𝑈(𝑒𝑖Ω) =
1

1−𝑒−𝑖Ω +

∑ πδ(Ω − 2πr)∞
𝑟=−∞  

(Oppenheim et al., 1999). Thus, the DTFT of {𝐺𝑒} ∙ 𝑢[𝑛] is 
{𝐺𝑒}

1−𝑒−𝑖Ω + {𝐺𝑒} ∑ 𝜋𝛿(Ω − 2𝜋r)∞
𝑟=−∞  and can be 

added to Equation (A5). Finally, substituting 𝑎𝑘 = 𝑒−Δ𝑡/𝜏𝑘 ,  𝑘 = 1,2, . . . , 𝐾 we obtain our final expression 

for Equation (11) in the main manuscript: 

 

𝑋(𝑒𝑖Ω) = Δ𝑡
{𝐺𝑒}

1 − 𝑒−𝑖Ω
+ Δ𝑡{𝐺𝑒} ∑ 𝜋𝛿(Ω − 2𝜋r)

∞

𝑟=−∞

 + Δ𝑡 ∑
𝐺𝑘

1 − 𝑒−Δ𝑡/𝜏𝑘𝑒−𝑖Ω

𝐾

𝑘=1

 

 

(A6) 

Where Δ𝑡 is added for normalization of the DTFT since the horizontal spacing of the time sequence is Δ𝑡 

in the Riemann sum defined by the DTFT. 

At this point we proceed to compare the DTFT latest equation with the CTFT, in order to study the effect 

of aliasing. It is illustrative to perform a Taylor series expansion on the exponential terms in the denominator, 

so both equations are closer in appearance.  

By performing a Taylor series expansion of the exponential term containing the characteristic times, we 

obtain: 

𝑒
−

Δ𝑡
τ𝑘 = 1 −

Δ𝑡

𝜏𝑘

+
(Δ𝑡/𝜏𝑘)2

2!
−

(Δ𝑡/𝜏𝑘)3

3!
+ ⋯ 

For small 
Δ𝑡

𝜏𝑘
 (to mitigate aliasing), we can keep up to the 2nd term in the series. Then, similarly: 

𝑒−𝑖ωΔ𝑡 = 1 − 𝑖ωΔ𝑡 −
(ωΔ𝑡)2

2!
+ 𝑖

(ωΔ𝑡)3

3!
+

(ωΔ𝑡)4

4!
− 𝑖

(ωΔ𝑡)5

5!
− ⋯ 

Keeping up to the 2nd term again, Equation (A6) becomes: 

 

𝑋(𝑒𝑖ωΔ𝑡) ≈ Δ𝑡
{𝐺𝑒}

1 − (1 − 𝑖ωΔ𝑡)
 + ∑

Δ𝑡𝐺𝑘

1 − (1 − Δ𝑡/𝜏𝑘)(1 − 𝑖ωΔ𝑡)

𝐾

𝑘=1

 

 

(A7) 

Expanding the denominator: 
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𝑋(𝑒𝑖ωΔ𝑡) ≈ Δ𝑡
{𝐺𝑒}

1 − 1 + 𝑖ωΔ𝑡
+ Δ𝑡{𝐺𝑒} ∑ 𝜋𝛿(Ω − 2𝜋r)

∞

𝑟=−∞

+ ∑
Δ𝑡𝐺𝑘

(𝑖ωΔ𝑡 + Δ𝑡/𝜏𝑘 − 𝑖ωΔ𝑡2/𝜏𝑘)

𝐾

𝑘=1

 

Simplifying we arrive at Equation (12) in the main manuscript that is similar in form to the theoretical time-

continuous case (Equation (3)). This is the expression we use in the main manuscript for our discussion of 

frequency aliasing as it explicitly shows it in the 𝑖ωΔ𝑡 term in the denominator, which is the “extra” term with 

respect to the theoretical continuous-time case (Equation (3)): 

 

𝑋(𝑒𝑖ωΔ𝑡) ~ {𝐺𝑒} (
1

𝑖ω
+ Δ𝑡 ∑ πδ(Ω − 2π𝑟)

∞

𝑟=−∞

) + ∑
𝐺𝑘𝜏𝑘

1 + 𝑖ω𝜏𝑘 − 𝑖ωΔ𝑡

𝐾

𝑘=1

 

 

 

(A8) 

Appendix 2: Derivation of DTFT for a finite M-size sequence 

 

Now we turn our attention to the case of the finite M-element sequence, where we also ignore for now 𝐺𝑒 

rubbery modulus: 

 

𝑦[𝑛] = (𝑢[𝑛] − 𝑢[𝑀]) ⋅ (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

+ {𝐺𝑒}) ,  𝑛 = 1,2, . . . , ∞ 

 

(A9) 

where 𝑎𝑘 = 𝑒−Δ𝑡/𝜏𝑘 ,  𝑘 = 1,2, . . . , 𝐾. 

 

The DTFT is defined as a Riemann sum:  𝑌(𝑒𝑖Ω) = ∑ 𝑦[𝑛]∞
𝑛=−∞ 𝑒−𝑖Ω𝑛 and is applied to our previous 

equation. For the time being, we drop the {𝐺𝑒} constant term whose contribution will be added at the end (by 

linearity of DTFT), for tidiness in the derivation. 

 

For 𝑛 < 0 the terms are zero so we can rewrite the summation for 𝑛 ≥  1: 

 

𝑌(𝑒𝑖Ω) = ∑ ((𝑢[𝑛] − 𝑢[𝑛 − 𝑀]) (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

))

∞

𝑛=1

𝑒−𝑖Ω𝑛 

 

(A10) 

We can split the summation into two parts, one with 𝑢[𝑛] and the other with 𝑢[𝑛 −  𝑀]: 
 

𝑌(𝑒𝑖Ω) = ∑ 𝑢[𝑛] (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

) 𝑒−𝑖Ω𝑛

∞

𝑛=1

− ∑ 𝑢[𝑛 − 𝑀] (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

) 𝑒−𝑖Ω𝑛

∞

𝑛=1

 

 

(A11) 

Let us compute the DTFT of each part separately: 𝑌(𝑒𝑖Ω) = 𝑋1(𝑒𝑖Ω) − 𝑋2(𝑒𝑖Ω) 

 

For the first part: 

 
𝑋1(𝑒𝑖Ω) = ∑ 𝑢[𝑛] (∑ 𝐺𝑘𝑎𝑘

𝑛

𝐾

𝑘=1

) 𝑒−𝑖Ω𝑛

∞

𝑛=1

 

 

(A12) 

Since 𝑢[𝑛]  =  0 for 𝑛 <  0, we can rewrite the summation for 𝑛 ≥  0: 

 

𝑋1(𝑒𝑖Ω) = ∑ (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

) 𝑒−𝑖Ω𝑛

∞

𝑛=0

 

 

(A13) 

 

Following the same steps as in Appendix 1: 

 

𝑋1(𝑒𝑖Ω) = ∑ 𝐺𝑘

1

1 − 𝑎𝑘𝑒−𝑖Ω

𝐾

𝑘=1

 

 

(A14) 

For the second part: 
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𝑋2(𝑒𝑖Ω) = ∑ 𝑢[𝑛 − 𝑀] (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

) 𝑒−𝑖Ω𝑛

∞

𝑛=1

 

 

(A15) 

Since 𝑢[𝑛 −  𝑀]  =  0 for 𝑛 <  𝑀, we can rewrite the summation for 𝑛 ≥  𝑀: 

 
𝑋2(𝑒𝑖Ω) = ∑ (∑ 𝐺𝑘𝑎𝑘

𝑛

𝐾

𝑘=1

) 𝑒−𝑖Ω𝑛

∞

𝑛=𝑀

 

 

(A16) 

We can rewrite the summation with a change of variable 𝑝 =  𝑛 −  𝑀: 

 

𝑋2(𝑒𝑖Ω) = ∑ (∑ 𝐺𝑘𝑎𝑘
𝑝+𝑀

𝐾

𝑘=1

) 𝑒−𝑖Ω(𝑝+𝑀)

∞

𝑝=0

 

 

(A17) 

Factoring out 𝑒−𝑖Ω𝑀 

 

𝑋2(𝑒𝑖Ω) = 𝑒−𝑖Ω𝑀 ∑ (∑ 𝐺𝑘𝑎𝑘
𝑀(𝑎𝑘

𝑝
)

𝐾

𝑘=1

) 𝑒−𝑖Ω𝑝

∞

𝑝=0

 

 

(A18) 

Now, the inner summation is a geometric series just like in the previous Appendix: 

 

𝑋2(𝑒𝑖Ω) = 𝑒−𝑖Ω𝑀 ∗ ∑ 𝐺𝑘𝑎𝑘
𝑀

1

1 − 𝑎𝑘𝑒−𝑖Ω

𝐾

𝑘=1

 

 

(A19) 

Now, let us combine both parts to find the DTFT of the sequence 𝑦[𝑛]: 
𝑌(𝑒𝑖Ω) = 𝑋1(𝑒𝑖Ω) − 𝑋2(𝑒𝑖Ω) 

 
𝑌(𝑒𝑖Ω) = ∑ 𝐺𝑘

1

1 − 𝑎𝑘𝑒−𝑖Ω

𝐾

𝑘=1

− 𝑒−𝑖Ω𝑀 ∑ 𝐺𝑘𝑎𝑘
𝑀

1

1 − 𝑎𝑘𝑒−𝑖Ω

𝐾

𝑘=1

 

 

(A20) 

Substituting back 𝑎𝑘 = 𝑒−Δ𝑡/𝜏𝑘 and multiplying by Δ𝑡 for the Riemann sum normalization, we obtain: 

 

𝑌(𝑒𝑖Ω) = Δ𝑡 ∑
𝐺𝑘(1 − 𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑗𝛺𝑀)

1 − 𝑒−Δ𝑡/𝜏𝑘𝑒−𝑗Ω

𝐾

𝑘=1

 

 

(A21) 

For completeness let’s include the rubbery modulus term as it is relevant in certain cases. In other words, 

we now turn attention to Equation (A9) with the added 𝐺𝑒 term as it may be part of the time-relaxation function: 

 

𝑦[𝑛] = (𝑢[𝑛] − 𝑢[𝑀]) ⋅ (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

+ 𝐺𝑒) ,  𝑛 = 1,2, . . . , ∞ 

(A22) 

 

By the linearity of the DTFT, we can address this by separate parts, and then add them up: 

𝑦[𝑛] = (𝑢[𝑛] − 𝑢[𝑀]) ⋅ (∑ 𝐺𝑘𝑎𝑘
𝑛

𝐾

𝑘=1

) + (𝑢[𝑛] − 𝑢[𝑀]) ⋅ 𝐺𝑒 ,  𝑛 = 1,2, . . . , ∞ 

The DTFT of the first term is Equation (A21).  now we are interested in the DTFT of (𝑢[𝑛] − 𝑢[𝑀]) ⋅ 𝐺𝑒, 

 
𝑌2(𝑒𝑖𝜔) = ∑ (𝐺𝑒(𝑢[𝑛] − 𝑢[𝑛 − 𝑀]) ⋅ 𝑒−𝑖𝛺𝑛)

∞

𝑛=−∞

 
(A23) 

 

Since 𝑢[𝑛]  =  1 for 𝑛 >=  0 and 𝑢[𝑛]  =  0 for 𝑛 <  0, and 𝑢[𝑛 −  𝑀]  =  1 for 𝑛 >=  𝑀 and 𝑢[𝑛 −
 𝑀]  =  0 for 𝑛 <  𝑀, the sum becomes: 

𝑌2(𝑒𝑖ω) = 𝐺𝑒 ∑ ((1 − 0) ⋅ 𝑒−𝑖𝛺𝑛)

𝑀−1

𝑛=0

 

𝑌2(𝑒𝑖ω) = 𝐺𝑒 ∑ (𝑒−𝑖𝛺𝑛)

𝑀−1

𝑛=0

 

Now, we can compute the sum using the formula for the finite geometric series: 
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𝑌2(𝑒𝑖ω) = 𝐺𝑒

1 − 𝑒−𝑖𝛺𝑀

1 − 𝑒−𝑖𝛺
 

Now we can add this expression to Equation (A21) to get the DTFT of Equation (A22), which coincides 

with Equation (15) in the main manuscript: 

 

𝑌(𝑒𝑖Ω) = Δ𝑡 ∑
𝐺𝑘(1 − 𝑒−𝑀𝛥𝑡/𝜏𝑘𝑒−𝑖𝛺𝑀)

1 − 𝑒−𝛥𝑡/𝜏𝑘𝑒−𝑖𝛺

𝐾

𝑘=1

+ Δ𝑡 {
𝐺𝑒(1 − 𝑒−𝑖𝛺𝑀)

1 − 𝑒−𝑖𝛺
} 

(A24) 

 

Here again we perform Taylor series expansion substitutions.  First, we perform a Taylor series expansion 

of the exponential term containing the characteristic times: 

𝑒
−

Δ𝑡
τ𝑘 = 1 −

Δ𝑡

𝜏𝑘

+
(Δ𝑡/𝜏𝑘)2

2!
−

(Δ𝑡/𝜏𝑘)3

3!
+ ⋯ 

For small 
Δ𝑡

𝜏𝑘
 (to mitigate aliasing), we can approximate it up to the 2nd term. Then similarly: 

𝑒−𝑖ωΔ𝑡 = 1 − 𝑖ωΔ𝑡 −
(ωΔ𝑡)2

2!
+ 𝑖

(ωΔ𝑡)3

3!
+

(ωΔ𝑡)4

4!
− 𝑖

(ωΔ𝑡)5

5!
− ⋯ 

 

Now we substitute the Taylor series up to the second term: 

 

𝑌(𝑒𝑖ωΔ𝑡) ≈ Δ𝑡 ∑
𝐺𝑘

1 − (1 − Δ𝑡/𝜏𝑘)(1 − 𝑖ωΔ𝑡)

𝐾

𝑘=1

− Δ𝑡 ∑
𝐺𝑘𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑖ωΔ𝑡𝑀

1 − (1 − Δ𝑡/𝜏𝑘)(1 − 𝑖ωΔ𝑡)

𝐾

𝑘=1

+ Δ𝑡 {
𝐺𝑒(1 − 𝑒−𝑖ωΔ𝑡𝑀)

1 − (1 − 𝑖ωΔ𝑡)
} 

 

(A25) 

Expanding the denominators: 

 

𝑌(𝑒𝑖ωΔ𝑡) ≈ Δ𝑡 ∑
𝐺𝑘

(𝑖ωΔ𝑡 + Δ𝑡/𝜏𝑘 − 𝑖ωΔ𝑡2/𝜏𝑘)

𝐾

𝑘=1

− Δ𝑡 ∑
𝐺𝑘𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑗ωΔ𝑡𝑀

(𝑖ωΔ𝑡 + Δ𝑡/𝜏𝑘 − 𝑖ωΔ𝑡2/𝜏𝑘)
+ Δ𝑡 {

𝐺𝑒(1 − 𝑒−𝑖ωΔ𝑡𝑀)

1 − 1 + 𝑖ωΔ𝑡)
}

𝐾

𝑘=1

 

 

(A26) 

Simplifying: 

 
𝑌(𝑒𝑖ωΔ𝑡) ≈ ∑

𝐺𝑘𝜏𝑘

(𝑖ω𝜏𝑘 + 1 − 𝑖ωΔ𝑡)

𝐾

𝑘=1

− ∑
𝜏𝑘𝐺𝑘𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑗ωΔ𝑡𝑀

(𝑖ω𝜏𝑘 + 1 − 𝑖ωΔ𝑡)

𝐾

𝑘=1

 

+ Δ𝑡 {
𝐺𝑒(1 − 𝑒−𝑖ωΔ𝑡𝑀)

𝑖ωΔ𝑡
} 

 

(A27) 

Factoring out we arrive at our final expression in the main manuscript for the DTFT of a discrete and finite 

stress relaxation sequence (Equation (16)): 

 

𝑌(𝑒𝑖ωΔ𝑡) ≈ Δ𝑡 ∑
𝐺𝑘𝜏𝑘(1 − 𝑒−𝑀Δ𝑡/𝜏𝑘𝑒−𝑖𝜔𝛥𝑡𝑀)

(𝑖ω𝜏𝑘 + 1 − 𝑖ωΔ𝑡)

𝐾

𝑘=1

 + {
𝐺𝑒(1 − 𝑒−𝑖ωΔ𝑡𝑀)

𝑖ω
} 

(A28) 

 

The Riemann sum normalization factor Δ𝑡 is included here as well.  

 


