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For the analysis of structural components, the finite element method (FEM) 

has become the most widely applied tool for numerical stress- and subsequent 

durability analyses. In industrial application advanced FE-models result in 

high numbers of degrees of freedom, making dynamic analyses time-

consuming and expensive. As detailed finite element models are necessary for 

accurate stress results, the resulting data and connected numerical effort from 

dynamic stress analysis can be high. For the reduction of that effort, 

sophisticated methods have been developed to limit numerical calculations and 

processing of data to only small fractions of the global model. Therefore, 

detailed knowledge of the position of a component’s highly stressed areas is 

of great advantage for any present or subsequent analysis steps. In this paper 

an efficient method for the a priori detection of highly stressed areas of force-

excited components is presented, based on modal stress superposition. As the 

component’s dynamic response and corresponding stress is always a function 

of its excitation, special attention is paid to the influence of the loading 

position. Based on the frequency domain solution of the modally decoupled 

equations of motion, a coefficient for a priori weighted superposition of modal 

von Mises stress fields is developed and validated on a simply supported 

cantilever beam structure with variable loading positions. The proposed 

approach is then applied to a simplified industrial model of a twist beam rear 

axle. 
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1. Introduction 

Just as the static strength, also the durability under dynamic loading is an essential property of structural 

components, as the unforeseen failure can cause catastrophic accidents or a malfunction (Schijve, 2001). Due 

to mass reduction and extensive exploitation of load bearing capacities, especially modern lightweight 

components from aerospace and automotive industry tend to be more sensitive to dynamic stress and failure 

(Rama et al., 2018) leading to increasing effort for numerical validation in the product development process. 

In addition to cost-intensive experimental investigations, in the last decades numerical methods, as the finite 

element method (FEM), have gained high importance in predicting stress fields of dynamically loaded 

structures. As detailed FE-models are necessary for sufficient stress accuracy, complexity of numerical models 

and numbers of degrees of freedom increase to a demanding task regarding disk space and CPU time. To 

overcome this, advanced methods are needed to meet the conflicting requirements of reducing computational 

cost and data as well as increasing stress accuracy. As direct methods can be very time consuming and costly, 

modal approximation methods are well-established in structural dynamics (Marinkovic & Zehn, 2018) in time 

domain as well as in frequency domain, which are based on modal decoupling of the system of equations of 

motion (Craig & Kurdila, 2006). With application of the so-called mode displacement method (MDM) 
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computational cost can be reduced to only a fraction of the direct solution of the full system. More recently, 

modal stress methods have gained high importance, especially in durability and numerical fatigue analyses. 

From the modal displacement approach, Yam et al. (1996) derive the basic concept of strain modes and show, 

that just as the displacement response, also the strain response can be approximated by superposition of the 

contributions of the system’s natural modes. Huang et al. (1998) apply modal transient methods for the 

durability analysis of a vehicle body structure, using modal stress superposition, as it is implemented in the 

FE-solver MSC.NASTRAN. Looking at the results of industrial stress analyses, one can see that typically high 

stress concentration is locally limited to critical regions of only a small fraction of the whole system. As 

indicated in the literature, the fraction of a model representing a fatigue concern is around 1% in automotive 

industry (Huang et al., 1997). For the identification of critical elements in (Huang et al., 1998), an element pre-

scan is performed for elements exceeding a threshold value of von Mises stress in a short peak loading event. 

After this, a subsequent full stress history analysis and fatigue-life evaluation is limited to the top 100 elements. 

These investigations resulted in a patented method for identifying highly stressed elements (Huang & Agrawal, 

2001). Gu et al. (Gu et al., 2012) investigate dynamic stress analysis of a mining dump truck from flexible 

multibody dynamics with modal representation of the structure, while stress recovery and durability analysis 

is performed, using stress mode superposition techniques. Lu et al. (2004)  analyse the durability of a battery 

support system under base excitation using modal transient stress analysis and application of crack propagation 

calculations. Tran et al. (2013) present the analysis of crack propagation under dynamic loading using 

superposition of modal stress intensity factors as well as modal energy release rate with an extended FEM 

approach. For numerical fatigue analysis, Vellaichamy et al. (2000) modify the modal stress superposition, 

which is usually carried out as postprocess after modal transient analysis. First, displacement and stress modes 

are calculated in the FE-solver. Then, modal load is calculated with force vector and displacement modes, 

outside the FEA-environment. The transient results are then combined with the stress modes within the Fatigue 

solver. Mrnsik et al. (2018) describe a method for fatigue estimation of structures using a modal decomposition 

approach. The authors directly link the fatigue damage intensity with the dynamic properties of the system. 

The proposed method is based on modal decomposition of the system’s dynamic stiffness matrix, giving insight 

to the modes’ contribution to the system’s total damage. Braccesi et al. (2016) evaluate the fatigue damage of 

structural components under random loading in the frequency domain using modal superposition. The method 

is based on the evaluation of the matrix of frequency response functions and stress mode superposition. For 

further reduction of computational effort, sophisticated methods have been developed to limit numerical 

calculations and processing of data to only critical regions of the global model. Albuquerque et al. (2015) 

propose a method based on the combination of finite element submodeling techniques and modal superposition 

using modal stress intensity factors. They demonstrate the applicability on a detailed FE-model of a critical 

detail of a railway bridge structure under transient traffic loading conditions. Lu et al. (2018) apply modal 

superposition techniques to the dynamic analysis of a high speed train bogie frame. Stress is calculated from a 

modal stress recovery method. With nominal stresses extrapolated from integration points, the contribution of 

each vibration mode to the fatigue damage at critical locations is investigated. Horas et al. (2016) describe a 

method for calculating a structure’s fatigue life using superposition of modal stress intensity factors, derived 

from the system’s eigenvectors and corresponding modal stress. The concept of modal superposition is 

extended to general fatigue damage quantities as stresses, strains or energetic parameters to assess local crack 

initiation, whereas detailed calculations are performed on local details of the global model. 

The detailed knowledge of the position of a component’s highly stressed areas is of great advantage for any 

present or subsequent analysis steps. Apart from established methods, which can generally be summarized as 

posteriori methods, as they root in the processing of existing stress data from pre-analysis steps, the system’s 

information inherent in the eigenvectors and especially in the resulting stress mode shapes, can be applied for 

the development of powerful methods for a priori high stress detection. Despite the high potential benefit of 

the knowledge of highly stressed areas, only few research aims to these investigations. Veltri (2016) describes 

a method for the a priori prediction of stress concentration based on component-mode-synthesis (CMS) 

methods, namely the Craig-Bampton method, for the durability analysis of an all-terrain vehicle frame 

subjected to road-load time histories. Following the underlying theory of the Craig-Bampton reduction, 

information about highly stressed elements is gained from selected fixed interface normal modes. The influence 

of external loading is captured by a set of constrained modes. For numerical fatigue analysis of plate-type 

structures subjected to random base excitation,  Zhou et al. (2016) propose a two-step procedure, where in a 

first step, highly stressed elements are located by means of modal stress analysis. In the second step, a fatigue 

analysis is carried out on these hot spots in the frequency domain. Later the contributions of dominant modes 

have been interpreted from mass modal participation factors of a notched elbow structure and a subsequent 

random vibration fatigue analysis has been performed on the identified hot spots (Zhou et al. 2017).  

As the application of mass modal participation factors is theoretically limited to structures under base 

excitation, the procedure needs to be handled with care. In this paper a novel approach is developed, based on 
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the a priori superposition of modal fields by means of appropriate approximation and prediction of maximum 

modal contributions for force excited systems. From the frequency domain solution of the modally decoupled 

equations of motion, a coefficient for a priori weighted superposition of modal von Mises stress fields is 

developed and validated on a simply supported cantilever beam structure with variable loading positions. The 

proposed approach is then applied to a simplified industrial model of a twist beam rear axle. The paper is 

structured as follows: In section 2, the basic equations of modal stress superposition are summarized and an 

approximation coefficient for a priori application is derived in section 3. For validation, investigations on a 

simple cantilever beam example are summarized, followed by application of the proposed approach to a 

simplified industrial example of a twist beam rear axle in section 4 and a summary and conclusion in section 5. 

2. Modal Stress Approach 

The finite element modeling of structural components for dynamic stress analysis results in a large number 

of second order differential equations (1). With the system’s mass matrix M, damping matrix C and stiffness 

matrix K, the vectors of nodal accelerations 𝐮̈(t), nodal velocities 𝐮̇(t) nodal displacements 𝐮(t) and the right-

hand-side force vector F(t), the discretised system of equations is defined: 

𝐌𝐮̈(𝐭) + 𝐂𝐮̇(𝐭) + 𝐊𝐮(𝐭) = 𝐅(𝐭)    (1) 

From established approximation methods in structural dynamics it is well-known, that a component’s dynamic 

displacement field can be approximated by linear superposition of the contributions of the system’s 

eigenvectors φi and modal coordinates qi (Craig & Kurdila, 2006). With the eigenvectors arranged as columns 

of the modal matrix X, the transformation of the system to modal coordinates is performed.  

𝐮(t) = ∑ 𝛗iqi(t)𝐫
𝐢=𝟏 = 𝐗𝐪(t)  (2) 

Just as these displacement modes, also the so-called strain modes 𝚿i are intrinsic dynamic characteristics of 

the vibrating structure. The strain modes are calculated as the derivative of the displacement modes. For the 

FE-discretised structure, this is achieved by a differential operator D applied to the displacement modes. 

𝚿i = 𝐃𝛗i   (3) 

The structure’s dynamic strain response ε can therefore be approximated by linear superposition of the 

contributions of modal strain fields (Yam et al., 1996).  

𝛆 = ∑ qi𝚿i
r
i=1    (4) 

Assuming linear elastic and homogeneous material, the corresponding stress response σ is calculated using 

Hooke’s matrix H. 

𝛔 = ∑ qi𝐇𝚿i
r
i=1    (5) 

For consistent superposition and high stress localization, equivalent stress measures can be evaluated from the 

resulting modal stress fields on element level for each mode, e.g. the elemental von Mises stress: 

σeqi,el
= √

1

2
[(σ1,el − σ2,el)

2
+ (σ2,el − σ3,el)

2
+ (σ3,el − σ1,el)

2
]   (6) 

Assuming modal damping, the equations of motion can be decoupled with the eigenvectors of the undamped 

system. Solving the system’s eigenvalue problem, the ith eigenvalue ωi
2 and the corresponding eigenvector φi 

can be calculated. 

(𝐊 − ωi
2𝐌)𝛗i = 𝟎   (7) 

Modal mass m𝑖, modal damping 𝑐𝑖 and modal stiffness k𝑖  are then calculated from the system’s mass, damping 

and stiffness matrix with corresponding eigenvectors: 

𝐗𝑇𝐌𝐗 = diag(m𝑖)      ;      𝐗𝐓𝐂𝐗 = diag(𝑐𝑖)      ;       𝐗𝑇𝐊𝐗 = diag(k𝑖)                                               (8)  

By application of the modes’ orthogonality properties, the modal coordinates 𝑞𝑖 for the forced vibration 

problem can be evaluated from a set of decoupled second order differential equations, with the modal velocities 

𝑞̇𝑖 and modal accelerations 𝑞̈𝑖 (Craig & Kurdila, 2006). 

[
m1 ⋯ 0

⋮ ⋱ ⋮
0 … mr

] [
q̈1(t)

⋮
q̈r(t)

] + [
c1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ cr

] [
q̇1(t)

⋮
q̇r(t)

] + [
k1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ kr

] [
q1(t)

⋮
qr(t)

] = 𝐗𝐓𝐅(t)  (9) 
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The frequency domain solution for harmonic excitation 𝐅(t) = 𝐅̂eiΩt can then be formulated for each row of 

equation (8).  

(−Ω2  + 2ϑiω0,iiΩ + ω0,i
2 )q̂ie

iΩt =
f̂i

mi
eiΩt                                                                                                    (10)

  

With the modal load f̂i for each mode,  

f̂i = 𝛗i
T𝐅̂    (11) 

the amplitude of the system’s response in modal coordinates follows as 

q̂i(Ω) =
1

(−Ω2 +2ϑiω0,iiΩ+ω0,i
2 )

ω0,i
2 f̂i

ki
eiΩt    (12) 

By application of a modal stress approach and transforming back to physical coordinates, we find the complex 

stress transfer function Hσ(η) for the force-excited system with the frequency ratio ηi = Ω/ω0,i    

𝐇𝝈(η) = ∑ 𝐇𝚿i
((1−ηi

2)−i2ϑiηi)

ki((1−ηi
2)

2
+4ϑi

2ηi
2)

r
i=1     (13) 

3. A Priori Mode Superposition 

A mechanical component’s dynamic response and corresponding stress is directly correlated to its excitation. 

The influence of loading position as well as loading direction therefore plays a crucial role in the development 

of an a priori mode superposition approach. From equation (12), we find the amplification function V(ηi) for 

each mode: 

V(ηi) =
1

ki√(1−ηi
2)

2
+4ϑi

2ηi
2
    (14) 

From the derivation of the amplification function of the underdamped system with ϑ ≤
√2

2
, we find the 

maximum response at resonance: 

ηres = √1 − ϑ2    (15) 

With the maxima of the amplification function from equation (14), the maximum modal response can be written 

as: 

q̂i(t) =
𝛗i

T𝐅̂

ki2ϑi√1−ϑ2
eiΩt    (16) 

And, by application of equation (4), the maximum stress response can be approximated as 

𝛔max(t) = ∑ 𝐇𝚿i
𝛗i

T𝐅̂

ki2ϑi√1−ϑ2

r
i=1 eiΩt    (17) 

Separation of the system’s excitation to one spacial force-direction vector f and one time-dependent vector of 

loading functions p(t), then allows for a priori application of the modal stress superposition in non-harmonic 

loading. Loading position and direction in this case are captured by the dot-product of eigenvector and force-

direction vector, independent from the excitation function. 

f̂i = 𝛗i
T𝐟𝐩(𝐭)    (18) 

With the assumption that all modal maxima are in-phase, the solution can be seen as an upper bound for 

maximum dynamic stress and we find a weighting coefficient Γi for the a priori superposition of modal fields.  

Γi =
𝛗i

T𝐟

ki2ϑi√1−ϑ2
    (19) 

As the maximum response is considered at resonance, frequency dependency is eliminated. 

𝛔max = ∑ 𝐇𝚿iΓi
r
i=1     (20) 

For validation of these assumptions, a simple example of a beam structure is investigated. The cantilever beam 

(see Figure 1) has a length of 1 m and a square cross-section of 10 x 10 mm². It is supported at its end and 

discretised with 100 linear beam elements. For investigation of the influence of the loading position on the 
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modal contributions, the system’s steady state response in a frequency range of 2 kHz is analyzed for 9 loading 

positions in y-direction. 

 

Figure 1. Cantilever beam example with 9 loading positions 

The calculation is performed using modal decoupling with the system’s first 10 eigenvectors and modal 

damping ϑ = 0.2. The response of each modal coordinate for a unit load at position 1 is summarized in 

Figure 2. 

 

Figure 2. Response of the first 10 modal coordinates 

For high stress detection, the maximum of each modal coordinate is taken for superposition of the 

corresponding modal fields as an upper bound reference solution, according to equation (19).The proposed 

weighting coefficient for a priori superposition in that case equals the maxima of the modal coordinates from 

the reference solution, as seen in Figure 3.  
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Figure 3. Comparison of modal contributions from reference and a priori approximation 

As the coefficients of modal contributions are equal, both in reference solution and a priori approach, the 

resulting superimposed stress fields will consequently show no deviation, which will be shown in detail in the 

following application. 

4. Industrial Application 

To show applicability of the proposed approach to industrial models, a simplified beam model of a twist 

beam rear axle, seen in Figure 4, is investigated. For general investigations, excluding the effects of local 

details, the complex geometry of the real axle is defeatured and simplified to enable modeling with beam 

elements. The properties of the simplified model are adapted to meet the global dynamic properties of the real 

model in the lower eigenfrequencies with similar global mode shapes.  

       

Figure 4. Industrial model and simplified beam model 

The simplified model is discretised with 1876 linear beam elements of type B31, with an average element 

length of 1 mm and circular cross-section of 40 mm in diameter, material properties are depicted in Table 1. 

At the sleeve positions for axle bushings, boundary conditions are fixed, with free rotation around the local x-

axis, for the areas of stub-axle assembly, one side is free and one side is fixed in both, displacement and rotation, 

as depicted in Figure 5. 

Table 1. Material properties 

Young’s Modulus E [MPa] Density ρ [t/mm³] Poisson ratio ν [1] 

220000 7.85 0.3 
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For investigation of the influence of the loading position on the resulting stress field, the system’s steady 

state response for modal decoupling with the first 10 modes in a frequency range of 1000 Hz with a frequency 

step of Δf = 1 Hz  and critical damping of ϑ = 0.2 is analysed for 4 loading positions, as depicted in Figure 5. 

 

 

Figure 5. Boundary conditions and loading positions 

As reference solution, the elemental von Mises stress is calculated from the superposition of the maxima of 

each modal coordinate with each corresponding stress mode, as derived in equation (16). The resulting stress 

over each element number is shown for all loading positions in Figure 6. 

 

Figure 6. Von Mises Stress over element labels for reference solutions 
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The maximum modal contributions from the decoupled steady state analyses are summarized in Figure 7.  

 

Figure 7. Maxima of modal coordinates for reference superposition 

The results show dominant contributions of modes 1-4 for the four loading positions. For interpretation of 

the resulting superimposed stress fields, the von Mises stress of these dominant modes, resulting from mass-

normalized eigenvectors, are depicted in Figure 8. 

 

Figure 8. Von Mises stress modes for dominant modes 1-4 
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From Figures 7 and 8 we find plausible results for the overall superimposed stress field with maxima of 

modal coordinates and corresponding stress modes. Comparison of the reference solutions with the results the 

proposed a priori superposition method shows exact match of both solutions, as indicated in section 3. 

 

Figure 9. Comparison of reference solutions and a priori results (exact match) 

5. Summary and Conclusion 

In the presented paper, a method for a priori high stress detection has been proposed, based on modal stress 

superposition. From the frequency domain solution of the decoupled equations of motion, an analytically 

consistent weighting coefficient for a priori mode superposition has been developed. By separation of the 

loading function into one spacial term and one term accounting for time dependency, the influence of loading 

position and direction is captured prior to dynamic analysis. For validation, modally decoupled frequency 

domain analyses have been performed with variable loading positions. Application of the proposed approach 

to a complex model, adapted from automotive industry shows, that for harmonic excitation, the results exactly 

match the reference solution. From the superimposed stress field, valuable information about highly stressed 

areas, as well as uncritical elements can be gained. With that knowledge, sophisticated subsequent analysis 

steps can be limited to only fractions of the global model, e.g. submodeling, substructuring or crack propagation 

analyses, providing high potential for data reduction and increasing efficiency. 
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